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a b s t r a c t

This paper considers inference for the set ΘI of parameter values that minimize a criterion function.
Chernozhukov et al. (2007) (CHT) develop a general theory of estimation and inference using the level-
set of a criterion function. We establish a dual relationship between the level-set estimator and its
support function and show that the properly normalized support function provides alternativeWald-type
inference methods. These methods can be used to obtain confidence sets for ΘI and points inside it. For
models with finitely many moment inequalities, we show that our Wald-type statistic is asymptotically
equivalent to CHT’s statistic under regularity conditions.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Statistical inference for partially identified economic models is
a growing field in econometrics. The fieldwas pioneered by Charles
Manski in the 1990s (SeeManski, 2003 and the references therein),
and there have since been substantial theoretical extensions and
applications. In this literature, the economic structures of interest
are characterized by an identified set ΘI , rather than by a single
point in the parameter space Θ ⊂ Rd, d ∈ N. Elements of the
identified set lead to observationally equivalent data generating
processes. A sample of data generated by any of the parameter
values in the identified set, therefore, gives us information about
the identified set, but not about the underlying ‘‘true’’ parameter
value generating the observed data.

Chernozhukov et al. (2007) (CHT) study estimation and sta-
tistical inference on ΘI within a general extremum estimation
framework. CHT have shown that a level-set estimator based on a
properly chosen sequence of levels for the criterion function con-
sistently estimates the identified set, defined as a set of minimiz-
ers. They use a quasi-likelihood ratio (QLR) statistic to construct a
confidence set that asymptotically covers the identified set with at
least a prespecified probability. This criterion function approach is
applicable to a broad class of problems.

Another common approach is to estimate the boundary of ΘI
directly. This is an attractive alternative if the boundary of the
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identified set is easily estimable. Recent studies show thatwhenΘI
is a compact convex set, its support function provides a tractable
representation by summarizing the location of the supporting hy-
perplanes of ΘI . (Beresteanu and Molinari, 2008 (BM); Bontemps
et al., 2012). So far, the criterion function approach and the support
function approach have been viewed as distinct. Each has its ad-
vantages and challenges. The criterion function approach is widely
applicable, but constructing the level set can be computationally
demanding. The support function approach, on the other hand, is
more direct and computationally tractable for some problems, but
it has been applied to a limited class of models when parame-
ters are multi-dimensional. A main contribution of this paper is to
unify these approaches within a general framework. We do this by
studying an inference method that is based on the support func-
tion of a level set estimator. To the best of our knowledge, this is
the first such effort.

In this paper, we focus on econometric models with compact
convex identified sets, which enables us to characterize the
identified set by its support function.1 This class includes many
econometric models studied recently, e.g., regression with interval
data (Manski and Tamer, 2002; Magnac and Maurin, 2008), a class
of discrete choicemodels (Pakes, 2010), consumer demandmodels
with unobserved heterogeneity (Blundell et al., 2014), and an asset
pricing model in incomplete markets (Kaido and White, 2009).
Following CHT, our estimator of ΘI is the level set Θ̂n = {θ :

1 Our analysis applies to the convex hull of the identified set if it is nonconvex.
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Qn(θ) ≤ tn} of a criterion functionQn(·) for some sequence of levels
{tn}. The support function approach provides a straightforward
algorithm to compute the boundary of this estimator. Specifically,
we propose to solve the optimization problem maxQn(θ)≤tn⟨p, θ⟩

for each p. This yields the support function s(·, Θ̂n) of the set
estimator as a value function and also gives the boundary of Θ̂n.
The optimization is a convex programming problem, which can be
solved using standard algorithms.

The estimated support function can also be used to conduct in-
ference. Using a dual relationship between the criterion function
and support function, we first show that the asymptotic distri-
bution of the properly normalized (centered and scaled) support
function is that of a specific stochastic process on the unit sphere.
The normalized support function lets us make various types of in-
ference for ΘI and points in ΘI . For example, as shown in BM, the
normalized support function allows one to construct a confidence
set that covers the identified set with at least some prescribed con-
fidence level. Further, one may test whether ΘI includes a specific
point, i.e., H0 : θ0 ∈ ΘI using a test statistic based on the esti-
mated support function. We contribute to the literature by estab-
lishing the asymptotic distribution of this statistic. Specifically, our
asymptotic distribution result generally holds even if the identified
set has kink points and thus extends the result of Bontemps et al.
(2012). This test can be inverted to construct a confidence set for
each point in the identified set.

Our work is related to the work of BM who first studied
inference based on estimated support functions for the case
where ΘI is a linear transformation of the Aumann expectation
of set-valued random variables and Bontemps et al. (2012) who
consider a confidence set for a point in the identified set, when
ΘI is characterized by incomplete linear moment restrictions. Our
analysis further contributes to this line of research by extending
these results to the general setting where ΘI is the set of
minimizers of a convex criterion function.

We apply themain results to econometricmodels characterized
by finitely many moment inequalities. This class has been exten-
sively studied recently (see references in Section 4). We contribute
to this literature by establishing a new equivalence result within
this class. OurWald-type statistic (squared directed Hausdorff dis-
tance) and CHT’s QLR statistic converge in distribution to the same
limit under some regularity conditions. As a result, theWald confi-
dence set, a set obtained by expanding the set estimator by a suit-
able critical value, is asymptotically equivalent to CHT’s confidence
set, a level set whose level is a specific quantile of the QLR statistic.

The paper is organized as follows. In Section 2, we summarize
CHT’s econometric framework and introduce some useful back-
ground.Weestablish the asymptotic distribution of thenormalized
support function and develop our inference methods in Section 3.
Section 4 studies moment inequality models. We present Monte
Carlo simulation results in Section 5 and conclude in Section 6. We
collect our mathematical proofs in the Appendix.

Throughout, we use the following notation. Let R+ := [0, ∞)
and R̄+ := R+ ∪ {∞}. For any closed set A ⊆ Rd, let ∂A denote
its boundary, and let Ao denote its interior. For any x, y ∈ Rd, let
⟨x, y⟩ denote the inner product of x and y, and let ∥x∥ denote the
Euclidean norm of x. We let Sd−1

= {x ∈ Rd
: ∥x∥ = 1} denote the

unit sphere in Rd, and C(Sd−1) is the set of continuous functions
on Sd−1. Finally, for any J × J matrix w and vector y ∈ RJ , we let
∥wy∥+ := ∥w(y ◦ 1{y ≥ 0})∥, where ◦ denotes the entrywise
product.

2. General setup

2.1. Criterion functions and set estimator

We start with introducing criterion functions and high level
conditions (Assumptions 2.1–2.3) based on the conditions in CHT.
Our first assumption is on the data generating process (DGP),
parameter space, and the criterion functions.

Assumption 2.1. (i) Let (Ω, F, P) be a complete probability space.
Let d ∈ N, and let Θ ⊆ Rd be a compact and convex parameter
space with a nonempty interior; (ii) Let Q : Rd

→ R̄+ be a
lower semicontinuous (lsc) function; (iii) For n = 1, 2, . . . , let
Qn : Ω × Rd

→ R̄+ be a jointly measurable function such that
Qn(ω, θ) < ∞ for at least one θ ∈ Θ , Qn(ω, θ) = ∞ for all θ ∉ Θ ,
and θ → Qn(ω, θ) is lsc with probability 1.

Compactness is a standard assumption on Θ for extremum
estimation. The function Qn acts as our sample criterion function.
For example, a commonly used criterion function for moment
inequality models is

Qn(ω, θ) =

Ŵ 1/2
n (ω, θ)

1
n

n
i=1

m(Xi(ω), θ)


2

+

, (2.1)

where m(x, θ) is a vector-valued function such that E[m(Xi, θ)] ≤

0 for one ormore values of θ , and Ŵn is a weightingmatrix that can
depend on the sample. For simplicity, wewriteQn(θ) below, but its
dependence onω should be understood implicitly. The function Q
is the population criterion function. Without loss of generality, we
normalize the minimum value of Q to 0. Following CHT, we then
define the identified set as the set of minimizers of Q :

ΘI := {θ ∈ Θ : Q (θ) = 0}. (2.2)

Throughout, we assume that ΘI is a non-empty subset of Θ . The
set estimator of ΘI is then defined as a level-set of Qn. We also
normalize Qn so that the minimum of Qn is 0. For a non-negative
sequence {tn} ⊂ R+ and a positive sequence {an} ⊂ R+, the set
estimator is defined by

Θ̂n(tn) := {θ ∈ Θ : anQn(θ) ≤ tn}. (2.3)

For any a ∈ Rd and closed set B ⊆ Rd, let d(a, B) := infb∈B ∥a− b∥.
For any closed subsets A, B of Rd, let

dH(A, B) := max

d⃗H(A, B), d⃗H(B, A)


,

d⃗H(A, B) := sup
a∈A

d(a, B), (2.4)

where dH and d⃗H are the Hausdorff and directed Hausdorff
distances respectively. The following assumptions based on CHT’s
conditions C.1–C.3 are general enough to be satisfied by many
examples involving inequality constraints.

Assumption 2.2. (i) supθ∈Θ{Q (θ) − Qn(θ)}+ = op(1). (ii) supθ∈ΘI
Qn(θ) = Op(1/an). (iii) There exist positive constants (δ, κ, γ )

such that for any ϵ ∈ (0, 1), there are (κϵ, nϵ) such that for all
n ≥ nϵ

Qn(θ) ≥ κ min{d(θ, ΘI), δ}
γ ,

uniformly on {θ ∈ Θ : d(θ, ΘI) ≥ (κϵ/an)1/γ } with probability at
least 1 − ϵ.

Assumption 2.3 (Degeneracy). (i) There is a sequence of subsets
Θn of Θ , which could be data dependent such that Qn vanishes on
these subsets, that is, Qn(θ) = 0 for each θ ∈ Θn, for each n, and
these sets can approximate the identified set arbitrarily well in the
Hausdorff metric, that is, dH(Θn, ΘI) ≤ ϵn for some ϵn = op(1). (ii)
ϵn = Op(a

−1/γ
n ).
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Under Assumptions 2.1–2.3, CHT’s Theorem 3.2 is applicable.
In particular, CHT show that it is possible to achieve consistency
and an exact polynomial rate of convergence by choosing a level
tn = t ∈ R+ such that t ≥ infθ∈Θ anQn(θ) with probability 1.
Hence, we have dH(Θ̂n(t), ΘI) = Op(a

−1/γ
n ).

Finally, we assume that ΘI and Θ̂n(t) are convex by assuming
that the population and sample criterion functions are convex.

Assumption 2.4. (i) Q is a convex function; (ii) Qn is a convex
function a.s.

2.2. Support function

Throughout, we use support functions to characterize compact
convex sets. The support function s(·, F) : Sd−1

→ R of a compact
convex set F ⊂ Rd is defined pointwise by
s(p, F) = sup

x∈F
⟨p, x⟩. (2.5)

The set H(p, F) = {x ∈ Rd
: ⟨p, x⟩ = s(p, F)} ∩ F is called the

support set. Heuristically, for each unit vector p ∈ Sd−1, the support
function s(p, F) measures the signed distance from the origin of
the supporting plane of the set F with a normal vector p (see the
online addendum for more detailed descriptions of these objects).
The support function is a continuous function on the unit sphere
and therefore takes its value in C(Sd−1). Since any convex set can
be represented by the intersection of such supporting planes, the
support function fully characterizes the boundary of the set of
interest.

In our setting, the support function of the set estimator Θ̂n(t)
offers a straightforward procedure to compute the boundary of
Θ̂n(t). Consider the following optimization problem:

maximize ⟨p, θ⟩, subject to anQn(θ) ≤ t. (2.6)

The optimal value function of this problem is s(p, Θ̂n(t)), and
a solution to (2.6) is a point in the support set H(p, Θ̂n(t)).
One may then trace out the boundary of Θ̂n(t) by solving (2.6)
for different values of p. The optimization problem in (2.6) is a
convex programming problem, which is often easily solvable using
standard algorithms (see for example Boyd and Vandenberghe,
2004).

In addition to providing a straightforward algorithm to
compute Θ̂n(t), support functions have useful properties for
inference. That is, for any compact convex sets A, B, it holds that
dH(A, B) = supp∈Sd−1 |s(p, A) − s(p, B)| and d⃗H(A, B) = supp∈Sd−1

{s(p, A) − s(p, B)}+.2 This means that the Hausdorff distance (or
the directed Hausdorff distance) between sets is equal to the
uniform distance (or the one-sided uniform distance) between the
support functions. These isometry relationships between sets and
support functions allow us to write

a1/γn dH(Θ̂n(t), ΘI) = sup
p∈Sd−1

|Zn(p, t)|,

and a1/γn d⃗H(ΘI , Θ̂n(t)) = sup
p∈Sd−1

{−Zn(p, t)}+,
(2.7)

where Zn(p, t) is the normalized support function defined by

Zn(p, t) := a1/γn


s(p, Θ̂n(t)) − s(p, ΘI)


. (2.8)

Therefore, if for a given t , Zn(·, t) converges weakly to some
limit Z(·, t) in C(Sd−1), then the desired limiting distributions of
Hausdorff distance measures follow from the continuous mapping
theorem. This in turn allows us to conduct inference for ΘI and
points inside it.

2 See Theorem 1.1.12 (Hörmander’s embedding theorem) in Li et al. (2002) and
Lemma A.1 in BM.
2.3. Examples

To fix ideas, we discuss below leading examples of models
with convex identified sets based on simplifications of well known
models. The first example is a regression model with an interval-
valued outcome studied in Manski and Tamer (2002).

Example 1 (Interval censored outcome). An outcome variable is
generated as

Y = Z ′θ + ϵ,

where Z ∈ Rd is a regressor vector with discrete support Z ≡

{z1, . . . , zJ}, θ ∈ Θ ⊆ Rd, and E[ϵ|Z] = 0. Y is not observed but
the outcome interval [YL, YU ] which contains Y is observed. The
identified set then consists of parameter values that satisfy

E[YL|Z = zj] ≤ z ′

jθ ≤ E[YU |Z = zj], j = 1, . . . , K . (2.9)

Since the constraints are affine in θ , the identified set is convex.
Let 1Z(z) = (1{z = z1}, . . . , 1{z = zK })′ and m(x) ≡

(yL1Z(z), yU1Z(z), 1Z(z)). Further, let A ≡ (−z1, . . . ,−zK ,
z1, . . . , zK )′. The affine constraints in (2.9) can then be written as

Aθ − F(E[m(X)]) ≤ 0 , (2.10)

where F : R3K
→ R2K is a transformation that combines uncondi-

tionalmoments to construct conditionalmomentswhose kth com-
ponent is defined as follows:

Fk(v) =


vk

v2K+k
, k = 1, . . . , K

−
vk

v2K+k
, k = K + 1, . . . , 2K .

(2.11)

Other examples that give the constraints of the form in (2.10) in-
clude the IV model for a binary outcome studied in Chesher (2009)
and a special case of revealed preference bounds studied in Blun-
dell et al. (2014).

Strictly convex identified sets also arise in an asset pricing
model with market frictions.

Example 2 (Pricing kernel). Let Z : Ω → RJ be the payoffs of J
securities that are traded at a price of V ∈ RJ

+. If short sales are not
allowed for any securities, then the feasible set of portfolioweights
is restricted to RJ

+ and the standard Euler equation does not
hold. Instead, under power utility, the following Euler inequalities
hold (see Luttmer, 1996):

E


1
1 + ρ

Y−γ Z − V


≤ 0, (2.12)

where Y : Ω → R+ is a state variable, e.g. consumption growth, ρ
is the investor’s subjective discount rate, and γ is the relative risk
aversion coefficient. When the payoff Z takes nonnegative values
almost surely, the set of parameter values θ = (ρ, γ ) that satisfy
(2.12) is convex. A criterion function can then be defined as in (2.1)
with X = (Y , Z ′, V )′ and mj(x, θ) =

1
1+ρ

y−γ z − v for all j. This
example belongs to the class of moment inequalitymodels studied
in Section 4.1.

3. Inference

We first establish the main duality that relates the stochastic
behavior of the normalized support function Zn(·, t) to that of a
localized criterion function. This result is then used to show that
Zn(·, t) converges weakly to a limit Z(·, t), which in turn ensures
the asymptotic validity of Wald-type inference methods based on
the normalized support function.
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Fig. 1. Set estimator Θ̂n(t) and its support function s(p, Θ̂n(t)).

3.1. Duality and the Asymptotic Distribution of Zn

To see how the criterion function and the support function
of the set estimator are related to each other, we start with the
following equivalence relationship:

s(p, Θ̂n(t)) < u ⇔ inf
θ∈Ku,p∩Θ

anQn(θ) > t, a.s., (3.1)

where Ku,p := {θ ∈ Rd
: ⟨p, θ⟩ ≥ u}.3 The left hand side of

(3.1) means the set estimator is separated from the half-space Ku,p

intersectedwithΘ . Since Θ̂n(t) is the t-level set of anQn, thismeans
that the minimum value of the function over Ku,p ∩ Θ exceeds the
chosen level t . Fig. 1 illustrates this relationship.

A key object for our asymptotic analysis is the sample criterion
function localized on a neighborhood of ΘI . For each (θ, λ) ∈

∂ΘI × Rd, define the local criterion function ℓn by

ℓn(θ, λ) := anQn(θ + λ/a1/γn ).

A dual relationship similar to (3.1) also holds for the local criterion
function ℓn and the normalized support function Zn. In particular,
using (3.1), Lemma C.2 in the Appendix shows that the following
relationship holds:

Zn(p, t) < u ⇔ inf
Rn,u,p

ℓn(θ, λ) > t, ∀(p, u) ∈ Sd−1
× R, a.s.,

(3.2)

where Rn,u,p := {(θ, λ) : θ ∈ H(p, ΘI), λ ∈ Ku,p ∩ a1/γn (Θ − θ)}

consists of the values of (θ, λ) such that θ is in the support set
H(p, ΘI) and λ is in the local parameter space Ku,p ∩ a1/γn (Θ − θ).

The equivalence relationship in (3.2) implies that the distribu-
tion ofZn(·, t) is tied to that of the infimumof ℓn over the set Rn,u,p.
The finite dimensional convergence of Zn(·, t) is then ensured if
the probability of the event on the right hand side of (3.2) con-
verges properly to some limit. Heuristically, the argument for es-
tablishing the limiting distribution can be summarized as follows.
For any {(pk, uk)}

m
k=1, the duality in (3.2) implies

P(Zn(p1, t) < u1, . . . , Zn(pm, t) < um)

= P


inf
Rn,u1,p1

ℓn(θ, λ) > t, . . . , inf
Rn,um,pm

ℓn(θ, λ) > t

. (3.3)

3 The proof of duality results discussed here are collected in Appendix C. Note
that if Θ̂n(t) = ∅, we take s(p, Θ̂n(t)) = supθ∈∅⟨p, θ⟩ = −∞.
If {infRn,uk,pk
ℓn(θ, λ)}mk=1 converges in distribution to {infRuk,pk

ℓ∞

(θ, λ)}mk=1 for some process ℓ∞ and suitable sets {Ruk,pk}
m
k=1, we can

seek a process Z such that

P(Z(p1, t) < u1, . . . , Z(pm, t) < um)

= P


inf
Ru1,p1

ℓ∞(θ, λ) > t, . . . , inf
Rum,pm

ℓ∞(θ, λ) > t

. (3.4)

Then, Zn(·, t) converges weakly in finite dimension to Z(·, t).
The next theorem establishes this; It further gives the asymptotic
distributions of the Hausdorff distances by showing that Zn(·, t)
convergesweakly toZ(·, t) inC(Sd−1). Below,we use

u.d.
→ to denote

weak convergence in C(Sd−1).4

Theorem 3.1. Suppose that Assumptions 2.1–2.4 and B.1 (in the Ap-
pendix) hold. Then, (i) for each t ∈ R+, Zn(·, t) converges weakly
in finite dimension to Z(·, t), where Z(·, t) is a stochastic process on
Sd−1, which has the representation:

Z(p, t) = sup
θ∈H(p,ΘI )

s

p, Λθ,t


, Λθ,t = {λ : ℓ∞(θ, λ) ≤ t}, (3.5)

where ℓ∞ is defined in Assumption B.1 in the Appendix; (ii) Further,
Zn(·, t)

u.d.
→ Z(·, t) so that

a1/γn dH(Θ̂n(t), ΘI)
d

→ sup
p∈Sd−1

|Z(p, t)|, and

a1/γn d⃗H(ΘI , Θ̂n(t))
d

→ sup
p∈Sd−1

{−Z(p, t)}+.

(3.6)

Theorem 3.1 characterizes the limiting distribution of the
support function of the set estimator and provides a basis for
asymptotically valid inference. We illustrate this result using
Example 1.

Example 1 (Interval censored outcome (continued)). Recall that the
inequality restrictions in (2.9) can be written as constraints affine
in θ . Using this, define a sample criterion function Qn by

Qn(θ) =

2K
k=1

σ̂−1
k,n


a′

kθ − Fk(Ên[m(Xi)]


+

, (3.7)

where ak denotes the kth row of A in (2.10), and σ̂ 2
k,n is a consistent

estimator of the asymptotic variance of the kth constraint.5 One can
then use the support function of a level-t set Θ̂n(t) of this criterion
function for inference. We will discuss how to compute Θ̂n(t) and
a confidence region using convex programs in the next section.

By the dual relationship in (3.2), the asymptotic behavior of the
normalized support functionZn(p, t) is tied to that of the following
local criterion function:

ℓn(θ, λ) =
√
n

2K
k=1

σ̂−1
k,n


a′

k(θ + λ/
√
n) − Fk(Ên[m(Xi)])


+

=

2K
k=1

σ̂−1
k,n

√
n{Fk(E[m(Xi)]) − Fk(Ên[m(Xi)])}

+ a′

kλ +
√
n{a′

kθ − Fk(E[m(Xi)])}


+

, (3.8)

4 The online addendum (http://people.bu.edu/hkaido/pdf/Supp_Duality.pdf)
provides discussions on the convergence modes of stochastic processes used in
this paper.
5 Due to the moments being affine in θ and A being known, the asymptotic

variance of the constraints does not depend on θ in this example.

http://people.bu.edu/hkaido/pdf/Supp_Duality.pdf
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where m(x) = (yL1Z(z), yU1Z(z), 1Z(z)). This local criterion
function ℓn(θ, λ) can then be shown to converge in the mode
required by Theorem 3.1 to the following limiting process:

ℓ∞(θ, λ) =

2K
k=1

σ−1
k


Gk + a′

kλ + ςk(θ)


+

, (3.9)

whereG ∈ R2K is amultivariate normal vectorwith the covariance
matrix ∇FΩm∇F ′ where ∇F is the gradient of F , Ωm is the
covariance matrix ofm(Xi), and ςk(θ) = 0 if a′

kθ − Fk(E[m(Xi)]) =

0, and ςj(θ) = −∞ otherwise.6 By Theorem 3.1, the limiting
distribution of the normalized support function Zn(p, t) depends
on ℓ∞ via (3.5), which governs the asymptotic properties of Wald-
type statistics we introduce below. Theorem 3.1 therefore gives
a theoretical basis for the asymptotic validity of our inference
methods. �

3.2. Inference

For making asymptotically valid inference, one needs to
consistently estimate critical values of the form:

c1−α(t) := inf

x : P


sup
p∈Ψ0

Υ (Z(p, t)) ≤ x


≥ 1 − α

, (3.10)

where Ψ0 ⊆ Sd−1, and Υ : R → R is a known function. Below,
we assume Qn is constructed from a sample {Xi : Ω → Rk

}
n
i=1 of

IID random vectors and give a generic subsampling procedure for
estimating c1−α .

Assumption 3.1. Let Assumption 2.1 hold with Qn(ω, θ) =

Q̃n(X1(ω), . . . , Xn(ω), θ)where Q̃n :
n

i=1 Rk
×Rd

→ R̄+ is jointly
measurable, n = 1, 2, . . ., and {Xi} is an IID sequence of random k-
vectors, k ∈ N.

Under Assumption 3.1, a straightforward subsampling algo-
rithm is the following.

Algorithm 3.1 (Subsampling for normalized support functions). Let
t > 0 and 0 < α < 1 be given. Let b := bn < n be a positive
integer, and letNn,b :=

n
b


. Let {Ψn}be a sequence of randomclosed

subsets of Sd−1.

Step 1. For k = 1, . . . ,Nn,b, construct Θ̂n,b,k(t), the set estimator
for the kth subsample, computed as a t-level set of the
criterion function abQ̃n,b,k(Xk1 , . . . , Xkb , θ).

Step 2. For k = 1, . . . ,Nn,b, compute Zn,b,k(p, t) := a1/γb
[s(p, Θ̂n,b,k(t)) − s(p, Θ̂n(t))].

Step 3. Compute the (1 − α)-quantile ĉn,b,1−α(t) of the subsam-
pling distribution:

F̂n,b(x, t) := N−1
n,b


1≤k≤Nn,b

1

sup
p∈Ψn

Υ (Zn,b,k(p, t)) ≤ x

.

(3.11)

For any t , let F(x, t) := P(supp∈Ψ0
Υ (Z(p, t)) ≤ x). The next

theorem is a basic result for subsampling statistics based on the
normalized support function.

6 The analysis of this example is similar to that for the moment inequalities,
which we will discuss in detail in Section 4.1. A difference is due to the presence
of the transformation F .
Theorem 3.2. Suppose the conditions of Theorem 3.1 and Assump-
tion 3.1 hold. Suppose further that Υ is Lipschitz continuous, Ψ0 is
compact, and that dH(Ψn, Ψ0) = op(1). Let F̂n,b(·, t) and ĉn,b,1−α(t)
be computed by Algorithm 3.1. Suppose that b → ∞ and b/n → 0 as
n → ∞. If x is a continuity point of F(·, t), then F̂n,b(x, t) → F(x, t)
in probability;

Remark 3.1. Subsampling is generally valid under Assumption 3.1
and the conditions of Theorem 3.1. We note, however, that if
the example of interest has additional structure, an alternative
inference method may be preferable in terms of the accuracy
of approximation or computational tractability. For example, the
score-based weighted bootstrap applied to models defined by
convex moment inequalities in Kaido and Santos (2014) does
not require repeated set estimation on bootstrap samples and is
therefore computationally more efficient.

3.2.1. Inference for the identified set
We illustrate the use of Theorem 3.1 by studying inference for

the identified set. Let Θ0 be a compact convex set, and consider
testing

H0 : Θ0 ⊆ ΘI vs. H1 : Θ0 ⊈ ΘI . (3.12)

We test this hypothesis using the scaled directed Hausdorff
distance:

T→

n (t) := a1/γn d⃗H(Θ0, Θ̂n(t)). (3.13)

Theorem 3.1 shows that under the null hypothesis, T→
n converges

in law to T→
:= supp∈Ψ0

Υ (Z(p, t)), where Υ (x) = {−x}+
and Ψ0 = Sd−1. A critical value can be computed using
Algorithm 3.1. Pointwise size control and the consistency against
fixed alternatives then follow as a corollary to Theorem 3.2.

Corollary 3.1. Suppose the conditions of Theorem 3.1 and Assump-
tion 3.1 hold. Let Θ0 be a nonempty compact convex subset of Θo.
Let ĉ→

n,b,1−α(t) be the 1 − α quantile of F̂n(·, t) computed by Al-
gorithm 3.1 with Υ (x) = {−x}+ and Ψn = Sd−1 for all n. Let
c̃→

n,b,1−α(t) = ĉ→

n,b,1−α(t) + δ, where δ > 0 is an arbitrarily small
constant.

(i) If Θ0 ⊆ ΘI and α ∈ (0, 0.5), then it holds that

lim sup
n→∞

P

T→

n (t) > c̃→

n,b,1−α(t)


≤ α;

(ii) If Θ0 ⊈ ΘI , then the test is consistent:

lim
n→∞

P

T→

n (t) > c̃→

n,b,1−α(t)


= 1.

In Corollary 3.1 (and also in Corollary 3.2), an arbitrarily small
constant δ > 0 is introduced to the critical value. This is to
ensure that the test remains asymptotically valid even if the
limiting distribution F→(·, t) of the test statistic is not continuous
at the 1 − α quantile or showing the continuity of F→(·, t)
is not straightforward. However, if the limiting distribution is
continuous, Corollary 3.1 holds with the critical value ĉ→

n,b,1−α(t),
and hence one does not need to introduce δ. In various empirically
relevant examples, this is a reasonable assumption. For example,
in the linear regression with an interval censored outcome
(Example 1), the limiting distribution can be shown to be the
maximum of a Gaussian process for which sufficient conditions
for its absolute continuity are known (see e.g. Tsirel’son, 1976;
Davydov et al., 1998). Other examples that have the same structure
include revealed preference bounds with linear payoffs (Pakes,
2010; Blundell et al., 2014) and an IV model with a binary
dependent variable (Chesher, 2009).
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A one-sided confidence set Cn that covers the identified set
with an asymptotic coverage probability 1 − α can be obtained by
inverting the test in Corollary 3.1. For each t , define

C1n(t) := {θ ∈ Θ : d(θ, Θ̂n(t)) ≤ c̃→

n,b,1−α(t)/a1/γn },

c̃→

n,b,1−α(t) = ĉ→

n,b,1−α(t) + δ. (3.14)

This confidence set is an expansion of the set estimator Θ̂n(t) by
the amount c̃→

n,b,1−α(t)/a1/γn .7 Under the conditions of Corollary 3.1,
the confidence set satisfies lim infn→∞ P (ΘI ⊆ C1n(t)) ≥ 1−α for
α ∈ (0, 0.5) and t small enough.

Remark 3.2. The hypothesis in (3.12) and its test using an
estimated support function is first studied in BM. Here, we use
the same hypothesis testing framework as theirs. However, there
are two key differences. First, the class of models considered
here is different. We require that ΘI to be the set of minimizers
of a convex criterion function, while BM considers a class of
models in which the identified set can be represented as a linear
function of the Aumann expectation of random sets. Second, the
limiting distribution of the directed Hausdorff distance statistic
T→
n (t) is derived differently. We use Theorem 3.1 exploiting the

duality between the support function and criterion function, while
BM applies the central limit theorem for IID random sets and a
continuousmapping theorem to their estimator, which is based on
a sample average of IID random sets.

We outline below how to construct the confidence region in the
context of Example 1.

Example 1 (Interval censored outcome (continued)). Constructing
C1n(t) requires the researcher to compute the support function of
the consistent set estimator Θ̂n(t) and subsampled set estimators
Θ̂n,b,k(t) in Algorithm 3.1. As pointed out earlier, these objects
can be computed by solving convex programs. With the criterion
function in (3.7), one can use the following linear program (LP) to
compute support functions:

max
(θ,v)∈Rd×R2K

⟨p, θ⟩

subject to
2K
k=1

wkvk ≤ t,

− vk + a′

kθ ≤ bk, k = 1, . . . , 2K ,

vk ≥ 0, k = 1, . . . , 2K , (3.15)

where b = (b1, . . . , b2K ) determines the location of the linear con-
straints, w = (w1, . . . , w2K ) is a weight vector on the constraints,
and v = (v1, . . . , v2K ) is a vector of auxiliary control variables.8

For example, if we set wk =
√
nσ̂−1

k,n and bk = Fk(Ên[m(Xi)]) with
m(x) = (yL1Z(z), yU1Z(z), 1Z(z)) for each k, the optimal value
of the LP above yields s(p, Θ̂n(t)), the support function of the set
estimator. Subsampled support functions s(p, Θ̂n,b,k(t)) can be
computed analogously. Hence, one may compute the normalized
support function Zn,b,k(·, t) in Algorithm 3.1 and obtain a critical
value c̃n,b,1−α(t) as defined in Corollary 3.1. To compute the con-
fidence region C1n(t), solve the LP in (3.15) again while replacing
the level t with c̃n,b,1−α(t). This gives, for each p ∈ Sd−1, a boundary
point of the confidence region C1n(t) as the optimizer of the prob-
lem.Hence, repeating this for different directions, one can trace out
the boundary of C1n(t).

7 C1n(t) can also be written as {θ ∈ Θ : d⃗H ({θ}, Θ̂n(t)) ≤ c̃→

n,b,1−α(t)/a1/γn }

because, when the first argument A of d⃗H is a singleton {a}, we have d⃗H (A, B) =

supa∈A d(a, B) = d(a, B) by Eq. (2.4).
8 For more details on computation, see discussions in Appendix F.
The directed Hausdorff distance statistic based on Θ̂n(t)
involves a user chosen parameter, the initial level t . As we will see
in Section 4.2, we can often properly weight the criterion function
so that the level t only affects the mean of the limiting process
Z(p, t). In this case, we can re-center the process Zn(p, t) by a
known function µ(t) or a consistent estimator µ̂n(t), so that the
choice of level becomes asymptotically irrelevant for inference.
Even if we do not have a known form for µ(t) or a consistent
estimator, it is possible to remove the arbitrariness in the choice
of t .

For each α ∈ (0, 1), let c→

1−α(t) = inf{x ∈ R : P(T→(t) ≤ x) ≥

1− α} denote the 1− α quantile of the limit law T→(t) of the test
statistic in (3.13) and let

t∗1−α := inf{t ∈ R+ : c→

1−α(t) = 0}. (3.16)

LemmaD.1 (in the Appendix) shows t → c→

1−α(t) is non-increasing
on the interval [0, t∗1−α]. This suggests that if we start with a large
t , the amount used in (3.14) to expand the set estimator will be
smaller asymptotically, and at t = t∗1−α , we do not need to expand
the set at all. The following theorem gives conditions under which
this change in the amount of expansion makes all confidence sets
with t ∈ [0, t∗1−α) asymptotically equivalent. For this result, we
require that the limiting distribution of T→

n (t) is continuous.9

Theorem 3.3. Suppose the conditions of Theorem 3.1 and Assump-
tion 3.1 hold. Suppose that the limiting process takes the form
Z(p, t) = µ(t) + Z∗(p) for each (p, t) ∈ Sd−1

× R+ where
µ : R+ → R is an unknown function and that Zn(p, t)−Zn(p, t ′) =

µ(t) − µ(t ′) + op(1) uniformly in p. Suppose that for each t ∈

[0, t∗1−α), the cdf of T→(t) is continuous and strictly increasing at its
1−α quantile. Let C1n(t) be defined as in (3.14)where c̃→

n,b,1−α(t) =

ĉ→

n,b,1−α(t). Then (i) for each α ∈ (0, 1) and 0 ≤ t < t∗1−α ,

dH

C1n(t), Θ̂n(t∗1−α)


= op(a−1/γ

n ). (3.17)

(ii) for each α ∈ (0, 1) and for any t, t ′ ∈ [0, t∗1−α), it holds that
dH

C1n(t), C1n(t ′)


= op(a

−1/γ
n ).

We also propose a generic iterative algorithm to construct a
confidence set.

Algorithm 3.2 (Iterative Algorithm). Set κ > 0 small. Initialize
l = 1, and set tl to an initial value, say tl = 0.

Step 1. Construct the set estimator Θ̂n(tl). Estimate the asymp-
totic 1 − α quantile c→

1−α(tl) of the scaled directed Haus-
dorff distance a1/γn d⃗H(ΘI , Θ̂n(tl)) by Algorithm 3.1 with
Υ (x) = {−x}+ and Ψ0 = Sd−1, obtaining ĉ→

n,b,1−α(t1).
Using ĉ→

n,b,1−α(tl), expand Θ̂n(tl) by ϵ̂→

n,b,1−α(tl) =

ĉ→

n,b,1−α(tl)/a
1/γ
n to obtain C1n(tl).

Step 2. Update the level by setting tl+1 := supθ∈C1n(tl) anQn(θ).
Step 3. Repeat steps 1–2 until |tl+1 − tl| < κ .

The iterative algorithm can be proved to yield an increasing
sequence {tl, l = 1, 2, . . .} that tends to t∗1−α . As Theorem 3.3
shows, if the limiting process takes the form Z(p, t) = µ(t) +

Z∗(p), one may stop at Step 1.

9 Recall that, if the limiting distribution of T→
n (t) is continuous, the conclusions

of Corollary 3.1(i) holds with the critical value c̃→

n,b,1−α(t) = ĉ→

n,b,1−α(t), i.e. δ = 0 in
(3.14).
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Remark 3.3. CHT’s confidence set satisfies limn→∞ P(ΘI ⊆

Θ̂n(τ̂n,b,1−α)) = 1 − α, where τ̂n,b,1−α is a subsampling estimate
of the 1− α quantile τ ∗

1−α of the limiting distribution of their QLR-
statistic Sn := supΘI

anQn(θ). Theorem 3.3 suggests, if t∗1−α =

τ ∗

1−α , the confidence sets based on the QLR-approach and our
approach are asymptotically equivalent. In Section 4.1, we will
provide conditions under which this holds for moment inequality
models.

3.2.2. Inference for points in the identified set
The estimated support function can also be used to make

inference for points in the identified set. Let θ0 ∈ Θ , and consider
testing

H0 : θ0 ∈ ΘI vs. H1 : θ0 ∉ ΘI . (3.18)

We again use the directed Hausdorff distance statistic to test the
hypothesis. Define the statistic

T→

n,θ0(t) := a1/γn d⃗H({θ0}, Θ̂n(t))

= sup
p∈Sd−1

a1/γn


⟨p, θ0⟩ − s(p, Θ̂n(t))


+
. (3.19)

The following theorem characterizes the asymptotic distribution
of this statistic when θ0 is on the boundary of ΘI .

Theorem 3.4. Suppose the conditions of Theorem 3.1 hold. Suppose
further that θ0 ∈ ∂ΘI . Then,

T→

n,θ0(t)
d

→ sup
p∈Ψ0

{−Z(p, t)}+, (3.20)

whereΨ0 ⊆ Sd−1 is defined asΨ0 := argmaxp∈Sd−1⟨p, θ0⟩−s(p, ΘI).

Let c→

1−α(θ0, t) be the 1 − α quantile of supp∈Ψ0
{−Z(p, t)}+.

An aspect specific to pointwise inference is that Ψ0 in (3.20) is
generally unknown and hence needs to be estimated from data.
This is, however, straightforward. SinceΨ0 is the set of maximizers
of a criterion function, it admits consistent estimation by a level-
set estimator. Letting {κn} be a sequence of positive constants such
that κn → ∞ and κn/a

1/γ
n → 0, we define

Ψ̂n := {p ∈ Sd−1
: ⟨p, θ0⟩ − s(p, Θ̂n(t))

≤ sup
p′

(⟨p′, θ0⟩ − s(p′, Θ̂n(t))) − κn/a1/γn }. (3.21)

The following corollary establishes that the test has asymptotic
level α and is consistent against any fixed alternative hypothesis.

Corollary 3.2. Suppose the conditions of Theorem 3.2 hold. Let
ĉ→

n,b,1−α(θ0, t) be the 1 − α quantile of F̂n(·, t) computed by Al-
gorithm 3.1 with Υ (x) = {−x}+ and Ψn = Ψ̂n for all n. Let
c̃→

n,b,1−α(θ0, t) = ĉ→

n,b,1−α(θ0, t) + δ, where δ > 0 is an arbitrarily
small constant.

(i) If θ0 ∈ ΘI and α ∈ (0, 0.5), then it holds that
lim supn→∞ P


T→

n,θ0
(t) > c̃→

n,b,1−α(θ0, t)


≤ α;
(ii) If θ0 ∉ ΘI , then for any t ∈ R+ and α ∈ (0, 1), the test is

consistent:
limn→∞ P


T→

n,θ0
(t) > c̃→

n,b,1−α(θ0, t)


= 1.

A confidence set for θ0 can be obtained by inverting the test in
Corollary 3.2. Define

C2n(t) := {θ ∈ Θ : T→

n,θ (t) ≤ c̃→

n,b,1−α(θ, t)}. (3.22)

Under the conditions of Theorem 3.2, this confidence set has the
coverage property:

lim inf
n→∞

P (θ0 ∈ C2n(t)) ≥ 1 − α, for all θ0 ∈ ΘI . (3.23)
Remark 3.4. A statistic closely related to T→

n,θ0
(t) is studied in

Bontemps et al. (2012, Proposition 10) in the context of the
incomplete linear model. To derive the asymptotic distribution of
their statistic, these authors construct a sequence pn of unit vectors
that converges to some p0 ∈ Ψ0. Theorem 3.4 is a novel result that
complements their work by deriving the asymptotic distribution
of the statistic without such a sequence. For this, we note that our
statistic can be written as

T→

n,θ0(t) = max{a1/γn (φθ0(s(p, Θ̂n(t))) − φθ0(s(p, ΘI))), 0},

where for any x : Sd−1
→ R, φθ0(x) := supp∈Sd−1⟨p, θ0⟩ − x(p). In

the Appendix, we show that φθ0 belongs to a class of Hadamard di-
rectionally differentiable functionals. Theorem3.1 and a functional
δ-method in Shapiro (1991) then imply Theorem 3.4.

4. Moment inequality models

4.1. Inference for moment inequality models

We apply the main results to models defined by finitely many
moment inequalities. This class has been extensively studied
recently.10 We first show that, employing a criterion function
used in CHT, the framework in Section 3 can be applied to
convex moment inequalities. We then characterize the limiting
distribution of the normalized support function. This ensures that
the researcher may apply the Wald inference methods developed
in the previous section to this class of models. In Section 4.2, we
further establish a close connection between the support function
and criterion function approaches using the characterization of the
limiting distribution. Specifically, we show that inference based on
Wald and QLR statistics become asymptotically equivalent under
some conditions. This result can be thought of as a generalization of
an asymptotic equivalence result Beresteanu and Molinari (2008)
established for interval identified models, a special case of convex
moment inequalities.

In the following, we use E and Ên to denote the expectation
operators with respect to the data generating probability measure
and the empirical measure, respectively. Let mj : Rk

× Rd
→ R̄,

j = 1, . . . , J and mθ be a J × 1 vector whose jth component is
mj,θ := mj(X; θ). The model is then characterized by the following
moment inequality restrictions:

E(mj(X; θ)) ≤ 0, j = 1, . . . , J. (4.1)

A number of examples including Example 2 have this structure.
The identified set ΘI is the set of parameter values at which these
restrictions are satisfied. Following CHT, we consider population
and sample criterion functions of the form:

Q (θ) = ∥W 1/2(θ)E(mθ )∥
2
+
, and Qn(θ) = ∥Ŵ 1/2

n (θ)Ên(mθ )∥
2
+
,

(4.2)

where W and Ŵn are population and sample weighting matrices.
Below, we let P̄J be the set of J × J positive definite matrices and
make the following assumptions (Assumptions 4.1–4.3), which are
based on Condition M.2 in CHT. These conditions ensure the high-
level conditions (Assumptions 2.1–2.3).

10 Recent research in this area includes Guggenberger et al. (2008), Rosen (2008),
Andrews and Guggenberger (2009), Galichon and Henry (2009), Canay (2010),
Bugni (2010), Andrews and Soares (2010), Fan and Park (2010), Pakes et al. (2011),
Andrews and Barwick (2012), Moon and Schorfheide (2012), and Yildiz (2012)
among others.
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Assumption 4.1. Let (Ω, F, P)be a complete probability space. Let
d ∈ N, and let Θ ⊆ Rd be compact and convex, with a nonempty
interior; (ii) θ → E(mθ ) is continuous. W : Rd

→ P̄J is finite
and continuous on Θ , and det(W (θ)) = ∞ if θ ∉ Θ; (iii) Ŵn :

Ω × Rd
→ P̄J is finite and continuous on Θ , uniformly in n, and

det Ŵn(ω, θ) = ∞ if θ ∉ Θ with probability 1.

Assumption 4.1 makes a continuity assumption on the popula-
tion moment function θ → E(mθ ) and mild regularity conditions
on the parameter space and weighting matrix so that the popula-
tion criterion function is well-defined. The next assumption then
assumes that {mθ } is a P-Donsker class and a uniform consistent
estimator of the weighting matrix is available. These conditions
can be satisfied by various moment functions (van der Vaart and
Wellner, 2000) and estimators of weighting matrices, e.g. Ŵn(θ) is
an estimator of the inverse of the asymptotic covariance matrix of
Ên[mθ ].

Assumption 4.2. (i) {mθ : θ ∈ Θ} is a P-Donsker class; (ii) Ŵn(θ)
− W (θ) = op(1) uniformly over Θ .

We further assume that the population moment function de-
creases in the interior of the identified set and increases out-
side a neighborhood of the identified set sufficiently rapidly. This
assumption is used to guarantee the existence of a polynomial mi-
norant in Assumption 2.2 and a sequence of sets Θn in Assump-
tion 2.3, on which the sample criterion function degenerates.

Assumption 4.3. (i) There exist positive constants (C,M, ϵ̄) such
that for any 0 ≤ ϵ ≤ ϵ̄ and θ ∈ Θ−ϵ

I , max1≤j≤J E(mj,θ ) ≤ −Cϵ, and
dH(Θ−ϵ

I , ΘI) ≤ Mϵ, where Θ−ϵ
I = {θ ∈ ΘI : d(θ, Θ \ ΘI) ≥ ϵ};

(ii) There exist positive constants (C, δ) such that for any θ ∈ Θ ,
∥E(mθ )∥+ ≥ C(d(θ, ΘI) ∧ δ), and a continuous Jacobian Π(θ) :=

∇θE[mθ ] exists for each θ ∈ Θ .

Finally, we assume that the identified set is in the interior of Θ
and that the population and sample criterion functions are convex.

Assumption 4.4. (i) The map θ → ∥W 1/2(θ)E(mθ )∥
2
+

is convex;
(ii) θ → ∥Ŵ 1/2

n (θ)Ên(mθ )∥
2
+
is convex a.s.; (iii) ΘI ⊂ Θo.

Under these assumptions, the localized criterion function based
on Qn in (4.2) can be written as:

ℓn(θ, λ) =
Ŵ 1/2

n (θ + λ/
√
n)

√
nÊn(mθ+λ/

√
n)
2

+

=
Ŵ 1/2

n (θ + λ/
√
n)(Gnmθ+λ/

√
n + E[mθ+λ/

√
n])
2

+

=
Ŵ 1/2

n (θ + λ/
√
n)Mn(θ, λ)

2
+
, (4.3)

where Mn(θ, λ) := Gnmθ+λ/
√
n + Π(θ̄n)λ +

√
nE(mθ ), Gnmθ :=

√
n(Ên[mθ ] − E[mθ ]) is an empirical process indexed by θ ∈ Θ ,

and θ̄n is a mean value which lies between θ and θ + λ/
√
n. One

may then show that ℓn converges to the following limit in themode
required by Theorem 3.1:

ℓ∞(θ, λ) = ∥W 1/2(θ)M(θ, λ)∥2
+
, (θ, λ) ∈ ∂ΘI × Rd , (4.4)

where M(θ, λ) = G(θ) + Π(θ)λ + ς(θ), G(·) is a Gaussian
process on Θ , and ς(θ) is a vector whose jth component is such
that, for any θ ∈ ∂ΘI ,ςj(θ) = −∞when the population constraint
is slack, i.e. E(mj,θ ) < 0, and ςj(θ) = 0 when the population
constraint binds, i.e. E(mj,θ ) = 0. The following theorem shows
that our previously stated high-level conditions are satisfied under
Assumptions 4.1–4.4.

Theorem 4.1. Suppose Assumptions 4.1–4.4 hold. Then Assump-
tions 2.1–2.4 and B.1 are satisfied with ℓ∞ in (4.4).
Theorem 3.1 then applies. Therefore, the normalized support
function Zn(·, t) converges in law to the following process:

Z(p, t) = sup
θ∈H(p,ΘI )

sup
λ∈{λ:∥W1/2(θ)M(θ,λ)∥2

+
≤t}

⟨p, λ⟩. (4.5)

Hence, we have obtained a characterization of the limiting
distribution for the normalized support function. This has two
implications. First, the existence of the limiting distribution allows
one to employ the Wald-type methods developed in Section 3
to make inference within models defined by convex moment
inequalities. Second, (4.5) is also useful for establishing a further
connection between the support function and criterion function
approaches, which we elaborate below.

4.2. Asymptotic equivalence of Wald and QLR statistics

We use (4.5) to show that, under additional assumptions, the
Wald statistic (squared directed Hausdorff distance) and CHT’s
QLR statistic are asymptotically equivalent. Although this requires
additional restrictions, they allow us to establish a conceptually
important connection between the two approaches. Toward this
end, we introduce additional notation to denote active and slack
moment inequalities. For each θ ∈ ∂ΘI , let J(θ) := {j ∈

{1, . . . , J} : E(mj,θ ) = 0} be the set of indices associated with
activemoment inequalities, and let J(θ) be the number of elements
in J(θ). LetΠJ(θ)(θ) denote the J(θ)×dmatrix that stacks rows of
Π(θ) whose indices belong to J(θ). Let GJ(θ) denote the J(θ) × 1
vector of Gaussian processes that stacks components of G whose
indices belong to J(θ). Finally, let WJ(θ) denote the J(θ) × J(θ)
matrix that collects (i, j) elements ofW (θ) for i, j ∈ J(θ).

In the current setting, the support function s(·, ΘI) of the
identified set is the optimal value function of the following
problem:

sup ⟨p, θ⟩ (4.6)
s.t. E(mj,θ ) ≤ 0, for j = 1, . . . , J.

Eq. (4.5) implies that the limiting distribution of Zn(·, t) can be
studied by analyzing the following approximating problem for
each p ∈ Sd−1 and θ ∈ H(p, ΘI):

sup
λ

⟨p, λ⟩ (4.7)

s.t. ∥W 1/2
J(θ)(θ)[GJ(θ)(θ) + ΠJ(θ)(θ)λ]∥

2
+

≤ t.

Here, we note that the only binding constraints, i.e. j ∈ J(θ), are
relevant in (4.7). This is because the slack inequalities are dropped
because ςj(θ) = −∞ for any j ∉ J(θ), and the criterion function
discards negative moments. Solving the optimization problem in
(4.7) then gives a closed form for Z(p, t). For this, we add the
following assumption to simplify the limiting distribution.

Assumption 4.5. For each θ ∈ ∂ΘI , rank(ΠJ(θ)) = J(θ), i.e. the
rows of the Jacobian matrices are linearly independent.

In Assumption 4.5, we assume that the gradients of the
binding moment inequalities are linearly independent at each
boundary point. This, for example, excludes the case where some
boundary point is formed by the intersection of more than d
inequalities. Using this assumption and (4.7), one can then simplify
the representation of the limiting distribution, which allows to
compare theweak limit of theWald statistic with that of CHT’s QLR
statistic: supΘI

anQn(θ).

Corollary 4.1 (Asymptotic Equivalence for Moment Inequalities).
Suppose Assumption 4.1–4.5 and E.1 in the Appendix hold. Suppose
W (θ) satisfies WJ(θ)(θ) = [ΠJ(θ)(θ)ΠJ(θ)(θ)′]−1 for each θ ∈ ∂ΘI .
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Suppose ΘI is strictly convex. For each p ∈ Sd−1, let θI(p) ∈ ∂ΘI be
such that H(p, ΘI) = {θI(p)}.

Then, (i) supp∈Sd−1{−Zn(p, t) + t1/2}2
+

d
→ Z and supΘI

nQn(θ)
d

→ Z, where

Z := sup
p∈Sd−1


ΠJ(θI (p))(θI(p))ΠJ(θI (p))(θI(p))

′
−1

× ΠJ(θI (p))(θI(p))p, GJ(θI (p))(θI(p))
2
+

;

(ii) Further, it holds that t∗1−α = τ ∗

1−α .

Corollary 4.1 shows that the Wald statistic (squared directed
Hausdorff distance) and CHT’s QLR statistic are asymptotically
equivalent in the sense that they converge in distribution to the
same limit, a continuous functional of a Gaussian process. The
second result implies the asymptotic equivalence of the Wald and
QLR confidence sets for ΘI . When t∗1−α = τ ∗

1−α for α ∈ (0, 1/2),
Theorem 3.3 implies that for all t ∈ [0, τ ∗

1−α),11

dH

C1n(t), Θ̂n(τ

∗

1−α)


= op(n−1/2).

This means that the Wald confidence set, which is an expansion
of the set estimator is asymptotically equivalent to the QLR
confidence set, a level set using an asymptotic quantile of the QLR
statistic as a level.

Remark 4.1. Corollary 4.1 can be viewed as a generalization, to
the convex moment inequality models, of Theorem 3.1 in BM who
establish an asymptotic equivalence of Wald and QLR statistics
for models in which the identified set for a scalar parameter θ is
defined by twomoment inequalities E(X1) ≤ θ ≤ E(X2). BMuse an
estimator Θ̃n based on the average of set-valued random variables,
which is not necessarily a level-set estimator in general. However,
in this special case, BM’s estimator can be shown to coincide
with the set of minimizers of the criterion function Qn(θ) =

(Ên[X1i] − θ)2
+

+ (θ − Ên[X2i])
2
+
; this therefore becomes a level-

set estimator with t = 0. Hence, the ‘‘exact’’ equivalence of our
Wald statistic Wn :=

√
nd⃗H(ΘI , Θ̂n(0)) and BM’s Wald statistic

W̃n :=
√
nd⃗H(ΘI , Θ̃n) holds. Corollary 4.1 then implies that our

Wald statistic, CHT’s QLR statistic and BM’s Wald statistic are all
asymptotically equivalent in this special case.

5. Monte carlo experiments

Weuse Example 1 to examine the performance of our inference
procedure. Let Zi ≡ (Z1,i, Z2,i)′ where Z1,i = 1 and Z2,i is uniformly
distributed on a set of K equally spaced points on [−5, 5]. For
θ0 = (1, 2)′ we generate:

Yi = Z ′

i θ0 + ϵi i = 1, . . . , n, (5.1)

where ϵi is a standard normal random variable independent of
Zi. We then create upper and lower bounds (YL,i, YU,i) such that
YL,i ≤ Yi ≤ YU,i by:

YL,i = Yi − C − ViZ2
i i = 1, . . . , n

YU,i = Yi + C + ViZ2
i i = 1, . . . , n , (5.2)

where C = 1 and Vi is uniformly distributed on [0, 0.2] indepen-
dently of (Yi, Zi). Using the notation introduced in Section 2.3, one

11 Theorem 3.3 is applicable with c̃n,b,k(t) = ĉn,b,k(t). This is because, for α ∈

(0, 1/2), the continuity of the limiting distribution Z follows from Theorem 11.1 in
Davydov et al. (1998).
may then define a sample criterion function as follows (see also
(3.7) and subsequent discussions):

Qn(θ) =

2K
k=1

σ̂−1
k,n


a′

kθ − Fk(Ên[m(Xi)]


+

. (5.3)

For x ∈ R2K , we use the criterion function
2K

k=1(xk)+ to aggre-
gate binding moments instead of ∥x∥2

+
used in Section 4.1. This is

to make a comparison to the bootstrap procedure by Bugni (2010)
who uses this criterion function. Given a level set estimator Θ̂n(t)
of the sample criterion function in (3.7), the Wald-statistic is de-
fined by T→

n := supp∈Sd−1{
√
n(s(p, Θ̂n(t))− s(p, ΘI))}+. TheWald

approach obtains a confidence set by expanding the set estimator
Θ̂n(t) by the amount ĉn,b,1−α(t)/

√
n computed by subsampling the

Wald statistic. The QLR statistic is defined by Sn = supΘI
Qn(θ).

The QLR approach constructs a confidence set by taking a level set
Θ̂n(τ̂n,b,1−α), where the right level τ̂n,b,1−α is computed by resam-
pling the QLR statistic (Chernozhukov et al., 2007; Bugni, 2010).

We report the coverage probabilities of the following four
confidence sets. The first confidence set CWald is a Wald-type
confidence set defined as in (3.14) with t = ln(ln(n))

1
2 and δ = 0.

The second confidence set CIter is defined in the same manner
but uses Algorithm 3.2 to update the initial level. CCHT-Sub is CHT’s
confidence set with a subsampling critical value, and CCHT-Boot is
also a CHT-type confidence set with a critical value computed by
a bootstrap procedure proposed by Bugni (2010). Details on the
implementation of these procedures are discussed in Appendix F.

Tables 1 and 2 report the results of the Monte Carlo
experiments. Table 1 shows the coverage probabilities of the
four confidence sets, and Table 2 reports the median of the
Hausdorff distances between the identified set and each of the
four confidence sets. For the first three confidence sets, we report
the results under three different values of subsamples: (e.g. b =

100, 150, 200 for n = 1000). For the last confidence set CCHT-Boot,
the procedure requires a tuning parameter κn, which is used
to select moments that are relevant for the calculation of the
critical value. We set this parameter to three different values:
ln(ln(n))

1
2 , ln(n)

1
2 , and n1/8.

For n = 1000, the coverage probability of Wald confidence
set CWald tends to be slightly under the nominal level 0.95, but
the size distortion is limited (0.1–4%) across all values of K . The
size distortion, however, tends to become larger (2.1–5.3%) with
a smaller sample size: n = 500. The coverage probability of CIter
is higher than that of CWald and has a better size control property
although it is fairly conservative under some choice of subsample
sizes. This can also be seen from Table 2, which shows that the
median Hausdorff loss of CIter is larger than that of CWald. One
thing to note is that when the number of moment inequalities is
large (30 inequalities), CWald tends to be quite conservative for
some subsample sizes (e.g. b = 100, 150 with n = 500). This
indicates that the asymptotic approximation with a subsampling
critical value may not provide a good approximation to the finite
sample distribution when the number of inequalities is large.

The coverage probabilities of the CHT confidence sets vary
with subsample sizes. CCHT-Sub has size distortion in some settings
(e.g. K = 5). As pointed out by Bugni (2010), a better size control
is achieved by using a suitable bootstrap procedure. The coverage
probability of CCHT-Boot controls the size across all values of K ,
which therefore shows the uniform validity of the procedure. The
result is also robust over the set of values of tuning parameters,
while in some cases the procedure is conservative. Overall, the size
ofWald confidence setCWald is not as good as the CHT’s confidence
set with a suitable bootstrap procedure. The confidence set CIter
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Table 1
The coverage probabilities of confidence sets.

n = 1000 n = 500
K = 5 K = 9 K = 15 K = 5 K = 9 K = 15

CWald b = 100 0.935 0.949 1.000 b = 75 0.927 0.954 1.000
b = 150 0.927 0.936 0.941 b = 100 0.916 0.929 1.000
b = 200 0.922 0.922 0.910 b = 150 0.897 0.902 0.904

CIter b = 100 0.938 0.962 1.000 b = 75 0.982 0.991 1.000
b = 150 0.980 0.982 0.985 b = 100 0.992 0.991 1.000
b = 200 0.994 0.991 0.989 b = 150 0.998 0.996 0.998

CCHT-Sub b = 100 0.760 0.866 1.000 b = 75 0.893 0.983 1.000
b = 150 0.850 0.879 0.965 b = 100 0.912 0.970 1.000
b = 200 0.877 0.899 0.950 b = 150 0.932 0.969 0.992

CCHT-Boot κn = ln(ln(n))
1
2 0.990 0.994 0.998 κn = ln(ln(n))

1
2 0.994 0.999 0.999

κn = ln(n)
1
2 0.995 0.996 0.998 κn = ln(n)

1
2 0.997 0.999 0.999

κn = n
1
8 0.995 0.996 0.998 κn = n

1
8 0.996 0.999 0.999
Table 2
The median Hausdorff loss of confidence sets.

n = 1000 n = 500
K = 5 K = 9 K = 15 K = 5 K = 9 K = 15

CWald b = 100 0.186 0.268 0.986 b = 75 0.262 0.382 1.841
b = 150 0.183 0.259 0.313 b = 100 0.257 0.353 2.039
b = 200 0.180 0.252 0.293 b = 150 0.247 0.332 0.391

CIter b = 100 0.187 0.278 1.781 b = 75 0.321 0.472 1.941
b = 150 0.217 0.302 0.377 b = 100 0.359 0.479 2.658
b = 200 0.248 0.330 0.397 b = 150 0.416 0.523 0.647

CCHT-Sub b = 100 0.196 0.260 0.426 b = 75 0.321 0.429 0.857
b = 150 0.222 0.263 0.290 b = 100 0.333 0.399 0.640
b = 200 0.234 0.270 0.279 b = 150 0.352 0.397 0.423

CCHT-Boot κn = ln(ln(n))1/2 0.331 0.340 0.292 κn = ln(ln(n))1/2 0.490 0.449 0.386
κn = ln(n)1/2 0.351 0.352 0.303 κn = ln(n)1/2 0.527 0.471 0.406
κn = n1/8 0.345 0.350 0.301 κn = n1/8 0.514 0.465 0.400

Note: For Wald-type confidence sets (CWald, CIter) and CHT’s confidence set with a subsampling critical value (CCHT-Sub), the table reports
coverage probabilities and median Hausdorff losses under different subsample sizes. For CHT’s confidence set with a bootstrap critical
value (CCHT-Boot), the table reports results under different values of κn used for moment selection.
with the iterative algorithm has a better size control property than
CWald, but it is conservative in some settings.

6. Conclusion

This paper introduces a framework for partially identified
econometric models that unifies two general approaches recently
proposed in the literature: the criterion function approach and the
support function approach. We consider the general case where
the convex identified set ΘI is the set of minimizers of a criterion
function, estimated as an appropriate level set of a sample criterion
function, following CHT, and represented as a support function, as
in BM. Our main duality result shows that the support function
of CHT’s level set estimator converges to a well-defined limit
when a localized criterion function converges in a suitablemanner.
This yields Wald-type inference methods based on the estimated
support function for general models whose identified sets can
be characterized as the set of minimizers of convex criterion
functions, which therefore allow to study examples that do not
belong to the models studied by BM and Bontemps et al. (2012).

We highlight the duality result within the class of moment
inequality models by establishing the asymptotic equivalence of
our Wald statistic and CHT’s QLR statistic. We further show that
this implies the asymptotic equivalence of theWald confidence set
and CHT’s confidence set. For inference on the identified set and
points inside it, we propose a general subsampling procedure. This
procedure is valid pointwise, as we derive our results under a fixed
probability measure. Establishing the uniform asymptotic validity
of subsampling is important for partially identified models and is
one of our future tasks.
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Supplemental Appendix

In this supplemental appendix, we include additional condi-
tions and the proofs of the results stated in the main text. The
contents of the supplemental appendix are organized as follows.
Appendix A collects notation and definitions used throughout
the appendix. Appendix B gives the local process regularity, and
Appendix C contains the proof of Theorem 3.1 and auxiliary lem-
mas. Appendix D contains the proof of Theorems 3.2–3.4, Corol-
lary 3.2, and auxiliary lemmas. Appendix E contains the proof of
Theorem 4.1, Corollaries 4.1 and E.1. Appendix F collects details on
the Monte Carlo experiments.
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Appendix A. Notation and Definitions

The following is a list of notations and definitions used
throughout the appendix.

ℓn : Localized criterion function defined as
ℓn(θ, λ) = anQn(θ + λ/a1/γn ).

ℓ∞ : Limit of ℓn in the mode of Assumption B.1(ii).
Λθ,t : The level set Λθ,t = {λ ∈ Rd

: ℓ∞(θ, λ) ≤ t}.
H(p, ΘI) : The support set

H(p, ΘI) = {θ : ⟨p, θ⟩ = s(p, ΘI)} ∩ ΘI .
Ku,p, K o

u,p : The half spaces Ku,p := {x ∈ Rd
: ⟨p, x⟩ ≥ u}

and K o
u,p = {x ∈ Rd

: ⟨p, x⟩ > u}.
Ru,p, Ro

u,p : The sets Ru,p = H(p, ΘI) × Ku,p and
Ro
u,p = H(p, ΘI) × K o

u,p.

Rn,u,p, Ro
n,u,p : The sets Rn,u,p = {(θ, λ) : θ ∈ H(p, ΘI), λ ∈

Ku,p ∩ a1/γn (Θ − θ)}
and Ro

n,u,p = {(θ, λ) : θ ∈ H(p, ΘI), λ ∈

K o
u,p ∩ a1/γn (Θ − θ)}.

J(θ) : The set of indices associated with binding
moment inequalities at θ ∈ Θ.

J(θ) : The number of elements in J(θ).
ΠJ(θ) : The J(θ) × d matrix that stacks rows of Π(θ)

whose indices belong to J(θ).
GJ(θ) : The J(θ) × 1 vector that stacks components of

G whose indices belong to J(θ).
WJ(θ) : J(θ) × J(θ) matrix that collects (i, j) elements

ofW (θ) for i, j ∈ J(θ).

Appendix B. Local process regularity

In this Appendix, we first give additional regularity conditions
on the local criterion function used to prove Theorem 3.1.

Assumption B.1 (Local Process Regularity). (i) For any ϵ > 0 and
(u, p) ∈ R × Sd−1,

P

| inf
Rn,u,p

ℓn(θ, λ) − inf
Ru,p

ℓn(θ, λ)| ≥ ϵ


≤ ϵ

for n sufficiently large, where Ru,p := H(p, ΘI) × Ku,p. (ii) ℓn
converges to a convex lower semicontinuous function ℓ∞ in the
following sense; for any (uj, pj), j = 1, . . . ,m

lim inf
n→∞

P( inf
Ru1,p1

ℓn(θ, λ) > t, . . . , inf
Rum,pm

ℓn(θ, λ) > t)

≥ P( inf
Ru1,p1

ℓ∞(θ, λ) > t, . . . , inf
Rum,pm

ℓ∞(θ, λ) > t) (B.1)

lim sup
n→∞

P( inf
Rou1,p1

ℓn(θ, λ) ≥ t, . . . , inf
Roum,pm

ℓn(θ, λ) ≥ t)

≤ P( inf
Rou1,p1

ℓ∞(θ, λ) ≥ t, . . . , inf
Roum,pm

ℓ∞(θ, λ) ≥ t), (B.2)

where Ro
u,p := H(p, ΘI) × K o

u,p, and K o
u,p := {λ : ⟨p, λ⟩ > u}. (iii)

For each (u, p) ∈ R × Sd−1, ℓ∞(θ, ·) achieves its minimum on Ru,p.
For each t ∈ R+ and p ∈ Sd−1, the set Λθ,t ≡ {λ : ℓ∞(θ, λ) ≤ t}
satisfies supθ∈H(p,ΘI )

s(p, Λθ,t) < ∞.

Assumption B.1(i) requires the sequence of sets Rn,u,p to converge
to a limit Ru,p. This is satisfied, for example, if the identified set is
in the interior of the parameter space. Assumption B.1(ii) gives the
precise notion of convergence required for ℓn, which adapts the
concept of weak epiconvergence in Knight (1999) and Molchanov
(2005). This assumption is satisfied, for example, if the infimum
of ℓn and ℓ∞ over Ru,p is approximated by its infimum over some
compact subset R̃u,p ⊂ Ru,p and infR̃u,p ℓn converges weakly to
infR̃u,p ℓ∞. Details on the relationship between Assumption B.1(ii)
and other convergence concepts are discussed in the online
addendum. Assumption B.1(iii) requires ℓ∞’sminimumon Ru,p and
⟨p, θ⟩’s maximum over Λt,θ to be well-defined.

Appendix C. Proof of Theorem 3.1

In this Appendix, we establish Theorem 3.1 in multiple steps,
which we outline below.

Step 1: We first establish a duality relation between the
support function s(·, Θ̂n) and the sample criterion function Qn
(Lemma C.1). �

Step 2: Using Lemma C.1, we then show that the finite-
dimensional limit of the normalized support function Zn(p, t) =

a1/γn (s(p, Θ̂n) − s(p, ΘI)) can be related to that of inf(θ,λ)∈Ru,p ℓn
(θ, λ) (Lemma C.2). �

Step 3: In Lemma C.3, we further show that the finite-dimensional
distribution of the limiting localized function inf(θ,λ)∈Ru,p ℓ∞(θ, λ)
can be related to that of the limiting process Z(p, t). �

Step 4: Combining Steps 2–3, we then show Zn(·, t) converges
weakly in finite dimension to Z(·, t). We further strengthen this
convergence toweak convergence inC(Sd−1)using LemmaC.4. �

Lemma C.1 (Duality 1). Suppose that Assumption 2.1 holds. Let n ∈

N and t ∈ R+ be given. Then, for any u ∈ R and p ∈ Sd−1

s(p, Θ̂n(t)) < u ⇔ inf
θ∈Ku,p∩Θ

anQn(θ) > t (C.1)

s(p, Θ̂n(t)) ≤ u ⇒ inf
θ∈Ko

u,p∩Θ
anQn(θ) ≥ t (C.2)

with probability 1, where Ku,p is the half space Ku,p := {θ ∈ Rd
:

⟨p, θ⟩ ≥ u}.

Proof of Lemma C.1. The equivalence (C.1) holds trivially when
Ku,p ∩ Θ = ∅ because then the half space {θ ∈ Rd

: ⟨p, θ⟩ <

u} contains Θ and hence also contains Θ̂n(t), which in turn
implies that s(p, Θ̂n(t)) < u must be true. Further, the statement
infθ∈∅ anQn(θ) = ∞ > t is always true. Hence (C.1) holds. Below,
we assume Ku,p ∩ Θ ≠ ∅. It then follows that

s(p, Θ̂n(t)) < u ⇔ ⟨p, θ⟩ < u, ∀θ ∈ Θ̂n(t)

⇔ Θ̂n(t) ⊆ Θ \ Ku,p

⇔ Ku,p ∩ Θ ⊆ Θ \ Θ̂n(t)
⇔ anQn(θ) > t, ∀θ ∈ Ku,p ∩ Θ

⇔ inf
θ∈Ku,p∩Θ

anQn(θ) > t, (C.3)

where the first equivalence holds because sufficiency is immediate
from s(p, Θ̂n(t)) = supθ∈Θ̂n(t)⟨p, θ⟩, and the necessity follows
from the maximum being achieved on Θ̂n(t) by compactness of
Θ̂n(t) ensured by Assumption 2.1. Similarly, the last equivalence
follows from Qn being lower semicontinuous with probability 1
and Ku,p ∩ Θ being a nonempty compact set.

Similarly, (C.2) holds trivially when K o
u,p ∩ Θ = ∅. Assuming

K o
u,p ∩ Θ ≠ ∅ and arguing as in (C.3), it follows that

s(p, Θ̂n(t)) ≤ u ⇔ anQn(θ) > t, ∀θ ∈ K o
u,p ∩ Θ. (C.4)

Since t is a lower bound for the set {anQn(θ) : θ ∈ K o
u,p ∩ Θ},

the right hand side of (C.4) implies infθ∈Ko
u,p∩Θ anQn(θ) ≥ t . Hence,

(C.2) holds. This establishes the claim of the lemma. �
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Lemma C.2 (Duality 2). Suppose that Assumptions 2.1 and B.1(i)
hold. Let t ∈ R+ be given. Then, for any finite m-tuple {(uj, pj) ∈

R × Sd−1
}
m
j=1,

lim inf
n→∞

P(Zn(p1, t) < u1, . . . , Zn(pm, t) < um)

≥ lim inf
n→∞

P


inf
(θ,λ)∈Ru1,p1

ℓn(θ, λ) > t, . . . , inf
(θ,λ)∈Rum,pm

ℓn(θ, λ) > t

(C.5)

lim sup
n→∞

P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤ um)

≤ lim sup
n→∞

P


inf
(θ,λ)∈Rou1,p1

ℓn(θ, λ) ≥ t, . . . , inf
(θ,λ)∈Roum,pm

ℓn(θ, λ) ≥ t

.

(C.6)

Proof of Lemma C.2. We first note that the following equivalence
relations hold:

Zn(p, t) < u ⇔ s(p, Θ̂n(t)) < s(p, ΘI) + u/a1/γn

⇔ inf
θ ′∈K

s(p,ΘI )+u/a1/γn ,p
∩Θ

anQn(θ
′) > t

⇔ inf
θ∈H(p,ΘI ),λ∈Ku,p∩a1/γn (Θ−θ)

anQn(θ + λ/a1/γn ) > t, (C.7)

where the second equivalence follows from Lemma C.1, and the
third equivalence follows from the following equality

Ks(p,ΘI )+u/a1/γn ,p ∩ Θ

= {θ + λ/a1/γn : θ ∈ H(p, ΘI), λ ∈ Ku,p ∩ a1/γn (Θ − θ)}. (C.8)

We show (C.8). First, suppose θ ∈ H(p, ΘI) andλ ∈ Ku,p∩a1/γn (Θ−

θ). Then,

⟨p, θ + λ/a1/γn ⟩ = ⟨p, θ⟩ + a−1/γ
n ⟨p, λ⟩ ≥ s(p, ΘI) + u/a1/γn ,

where the last inequality follows from θ ∈ H(p, ΘI) and λ ∈ Ku,p.
Further, θ + λ/a1/γn ∈ Θ because λ ∈ a1/γn (Θ − θ). Hence,
θ + λ/a1/γn ∈ Ks(p,ΘI )+u/a1/γn ,p ∩ Θ . This establishes that the set
on the right hand side of (C.8) is a subset of Ks(p,ΘI )+u/a1/γn ,p ∩ Θ .
For the reverse inclusion, let θ ′

∈ Ks(p,ΘI )+u/a1/γn ,p ∩Θ and pick any

θ ∈ H(p, ΘI). We then let λ := a1/γn (θ ′
− θ). By construction, we

have λ ∈ a1/γn (Θ − θ). Further,

⟨p, λ⟩ = ⟨p, a1/γn (θ ′
− θ)⟩ = a1/γn (⟨p, θ ′

⟩ − ⟨p, θ⟩)

≥ a1/γn (s(p, ΘI) + u/a1/γn − s(p, ΘI)) = u,

where the inequality follows from θ ′
∈ Ks(p,ΘI )+u/a1/γn

∩ Θ .
Therefore, the reverse inclusion holds. This in turn establishes
(C.8).

Now, by (C.7) and the definition of ℓn and Rn,u,p, we obtain
Zn(p, t) < u ⇔ infRn,u,p ℓn(θ, λ) > t. Since this holds for any
finitem-tuple {(uj, pj)}mj=1, it follows that

P(Zn(p1, t) < u1, . . . , Zn(pm, t) < um)

= P


inf
Rn,u1,p1

ℓn(θ, λ) > t, . . . , inf
Rn,um,pm

ℓn(θ, λ) > t

. (C.9)

Note that, for any ϵ > 0, we have

P


inf
Ru1,p1

ℓn(θ, λ) > t + ϵ, . . . , inf
Rum,pm

ℓn(θ, λ) > t + ϵ


≤ P

max
1≤j≤m

 inf
Ruj,pj

ℓn(θ, λ) − inf
Rn,uj,pj

ℓn(θ, λ)

 ≥ ϵ


+ P


inf
Rn,u1,p1

ℓn(θ, λ) > t, . . . , inf
Rn,um,pm

ℓn(θ, λ) > t

, (C.10)
where we used the fact that, for any random vectors Yn, Xn : Ω →

Rm, an open set G ⊂ Rm, and its ϵ-contraction G−ϵ
:= {x ∈ G :

ρ(x,Gc) ≥ ϵ}, we have P(Yn ∈ G−ϵ) ≤ P(ρ(Xn, Yn) ≥ ϵ) + P(Xn ∈

G). Specifically, we used the metric ρ(Xn, Yn) = max1≤j≤m |Xj,n −

Yj,n| and the open set G = (t, ∞)m. Assumption B.1(i) ensures that
the first term on the right hand side of (C.10) becomes arbitrarily
small as n gets large. Therefore,

lim inf
n→∞

P


inf
Ru1,p1

ℓn(θ, λ) > t + ϵ, . . . , inf
Rum,pm

ℓn(θ, λ) > t + ϵ


≤ lim inf
n→∞

P


inf
Rn,u1,p1

ℓn(θ, λ) > t, . . . , inf
Rn,um,pm

ℓn(θ, λ) > t

.

(C.11)

Since ϵ is arbitrary, (C.5) then follows from (C.9) and (C.11).
Similarly, by Lemma C.1 and an argument as in (C.7), it follows

that Zn(p, t) ≤ u ⇒ infRon,u,p ℓn(θ, λ) ≥ t . Since this holds for any
finitem-tuple {(uj, pj)}mj=1, we have

P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤ um)

≤ P


inf
Ron,u1,p1

ℓn(θ, λ) ≥ t, . . . , inf
Ron,um,pm

ℓn(θ, λ) ≥ t

.

(C.12)

Note that, for any ϵ > 0, we have

P


inf
Ron,u1,p1

ℓn(θ, λ) ≥ t, . . . , inf
Ron,um,pm

ℓn(θ, λ) ≥ t


≤ P

max
1≤j≤m

 inf
Rouj,pj

ℓn(θ, λ) − inf
Ron,uj,pj

ℓn(θ, λ)

 ≥ ϵ


+ P


inf
Rou1,p1

ℓn(θ, λ) ≥ t − ϵ, . . . , inf
Roum,pm

ℓn(θ, λ) ≥ t − ϵ

,

(C.13)

where we used the fact that, for any random vectors Yn, Xn : Ω →

Rm, a closed set F ⊂ Rm, and its ϵ-expansion F ϵ
:= {x ∈ F :

ρ(x, F) ≤ ϵ}, we have P(Yn ∈ F) ≤ P(ρ(Xn, Yn) ≥ ϵ)+P(Xn ∈ F ϵ).
By Assumption B.1(i),

lim sup
n→∞

P


inf
Ron,u1,p1

ℓn(θ, λ) ≥ t, . . . , inf
Ron,um,pm

ℓn(θ, λ) ≥ t


≤ lim sup
n→∞

P


inf
Rou1,p1

ℓn(θ, λ) ≥ t − ϵ, . . . , inf
Roum,pm

ℓn(θ, λ) ≥ t − ϵ

.

(C.14)

Since ϵ is arbitrary, (C.6) then follows from (C.12) and (C.14). This
completes the proof. �

Lemma C.3. Suppose Assumption B.1 holds. Let t ∈ R+ be given.
Then, for any finite m-tuple {(uj, pj) ∈ R × Sd−1

}
m
j=1,

P

Z(p1, t) < u1, . . . , Z(pm, t) < um


≤ P


inf

(θ,λ)∈Ru1,p1

ℓ∞(θ, λ) > t, . . . , inf
(θ,λ)∈Rum,pm

ℓ∞(θ, λ) > t

(C.15)

P

Z(p1, t) ≤ u1, . . . , Z(pm, t) ≤ um


≥ P


inf

(θ,λ)∈Rou1,p1

ℓ∞(θ, λ) ≥ t, . . . , inf
(θ,λ)∈Roum,pm

ℓ∞(θ, λ) ≥ t

.

(C.16)

Proof of Lemma C.3. Let p ∈ Sd−1. We first note that supθ∈H(p,ΘI )
s(p, Λθ,t) < ∞ by Assumption B.1(iii). Arguing as in (C.3), we then
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obtain

sup
θ∈H(p,ΘI )

s(p, Λθ,t) < u

⇒ ⟨p, λ⟩ < u, ∀θ ∈ H(p, ΘI) and λ ∈ Λθ,t ,

⇔ Λθ,t ⊆ Rd
\ Ku,p, ∀θ ∈ H(p, ΘI)

⇔ Ku,p ⊆ Rd
\ Λθ,t , ∀θ ∈ H(p, ΘI)

⇔ ℓ∞(θ, λ) > t, ∀θ ∈ H(p, ΘI) and λ ∈ Ku,p

⇔ inf
(θ,λ)∈Ru,p

ℓ∞(θ, λ) > t, (C.17)

where the last equivalence follows from Assumption B.1(iii). Since
this holds for any finite m-tuple {(uj, pj), j = 1, . . . ,m}, (C.15)
holds.

Let Λo
θ,t := {λ ∈ Rd

: ℓ∞(θ, λ) < t}. We then have

inf
(θ,λ)∈Rou1,p1

ℓ∞(θ, λ) ≥ t

⇒ ℓ∞(θ, λ) ≥ t, ∀θ ∈ H(p, ΘI) and λ ∈ K o
u,p

⇔ Λo
θ,t ⊆ Rd

\ K o
u,p, ∀θ ∈ H(p, ΘI)

⇒ s(p, Λθ,t) ≤ u, ∀θ ∈ H(p, ΘI)

⇒ sup
θ∈H(p,ΘI )

s(p, Λθ,t) ≤ u, (C.18)

where the second equivalence follows from the definition of Λo
θ,t ,

the second implication follows becauseRd
\K o

u,p = {λ : ⟨p, λ⟩ ≤ u}
is closed hence contains Λθ,t = cl(Λo

θ,t), implying Λθ,t ’s support
function being weakly dominated by u. Since this holds for any
finitem-tuple {(uj, pj), j = 1, . . . ,m}, (C.16) holds. �

Lemma C.4. Let E be a compact set in a metric space. Let h :

[0, ∞) → [0, ∞) be a function such that h(0) = 0 and h is
continuous at 0. There is Bn such that Bn = Op(1). If for all x, y ∈

E, |ξn(x) − ξn(y)| ≤ Bnh(∥x − y∥), then {ξn} is stochastically
equicontinuous.

Proof of Lemma C.4. The result immediately follows from As-
sumption 3A and Corollary 2.2 in Newey (1991). �

Proof of Theorem 3.1. ByAssumption B.1(ii), Lemmas C.2 and C.3,
it follows that, for any {(uj, pj)}mj=1,

lim inf
n→∞

P(Zn(p1, t) < u1, . . . , Zn(pm, t) < um)

≥ lim inf
n→∞

P


inf
(θ,λ)∈Ru1,p1

ℓn(θ, λ) > t, . . . , inf
(θ,λ)∈Rum,pm

ℓn(θ, λ) > t


≥ P


inf
(θ,λ)∈Ru1,p1

ℓ∞(θ, λ) > t, . . . , inf
(θ,λ)∈Rum,pm

ℓ∞(θ, λ) > t


≥ P

Z(p1, t) < u1, . . . , Z(pm, t) < um


. (C.19)

Similarly, by Assumption B.1(ii), Lemmas C.2 and C.3, it follows
that

lim sup
n→∞

P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤ um)

≤ lim sup
n→∞

P


inf
(θ,λ)∈Rou1,p1

ℓn(θ, λ) ≥ t, . . . , inf
(θ,λ)∈Roum,pm

ℓn(θ, λ) ≥ t


≤ P


inf
(θ,λ)∈Rou1,p1

ℓ∞(θ, λ) ≥ t, . . . , inf
(θ,λ)∈Roum,pm

ℓ∞(θ, λ) ≥ t


≤ P

Z(p1, t) ≤ u1, . . . , Z(pm, t) ≤ um


. (C.20)
By (C.19) and (C.20), it follows that for any continuity point
(u1, . . . , um) of (Z(p1, t), . . . , Z(pm, t))′,

lim sup
n→∞

P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤ um)

≤ P(Z(p1, t) ≤ u1, . . . , Z(pm, t) ≤ um)

= P(Z(p1, t) < u1, . . . , Z(pm, t) < um)

≤ lim inf
n→∞

P(Zn(p1, t) < u1, . . . , Zn(pm, t) < um)

≤ lim inf
n→∞

P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤ um). (C.21)

Since lim infn→∞ P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤ um) ≤

lim supn→∞ P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤ um) always holds,
(C.21) ensures that limn→∞ P(Zn(p1, t) ≤ u1, . . . , Zn(pm, t) ≤

um) = P(Z(p1, t) ≤ u1, . . . , Z(pm, t) ≤ um) at any continuity
point (u1, . . . , um) of (Z(p1, t), . . . , Z(pm, t))′. Therefore Zn(·, t)
convergesweakly in finite dimension toZ(·, t). This establishes (i).

For (ii), it then suffices to show the tightness ofZn(·, t).We now
show the required conditions for Lemma C.4 using an expansion
of the support function. In the following, we extend s(·, ΘI) and
s(·, Θ̂n) from Sd−1 to Rd. Under our assumptions, ΘI is a compact
convex set, and Θ̂n(t) is a compact convex set almost surely. This
ensures that p → s(p, ΘI) is convex, and p → s(p, Θ̂n(t)) is
convex a.s. Now, take an open convex set O such that Sd−1

⊂ O.
Let p, q ∈ Sd−1. Then, by Theorem 10.48 in Rockafellar and Wets
(2005), for some p̄n and p̄ on the line segment that connects p and
q, there exist v̂n ∈ ∂s(p̄n, Θ̂n(t)) and w ∈ ∂s(p̄, ΘI) such that

s(p, Θ̂n(t)) − s(q, Θ̂n(t)) = ⟨v̂n, p − q⟩ (C.22)
s(p, ΘI) − s(q, ΘI) = ⟨w, p − q⟩. (C.23)

Subtracting (C.23) from (C.22) and multiplying both sides by a1/γn
yields

Zn(p, t) − Zn(q, t) = a1/γn ⟨v̂n − w, p − q⟩. (C.24)

Note that, under Assumption 2.2–2.3, CHT’s Theorems 3.2 and
1.1.12 in Li et al. (2002) imply Zn(p, t) = Op(1) for any p ∈ Sd−1.
Therefore a1/γn ⟨v̂n − w, p − q⟩ = Zn(p, t) − Zn(q, t) = Op(1) for
any p, q ∈ Sd−1. Since this holds for any p and q, each component
of a1/γn (v̂n − w) must be Op(1). Therefore, a

1/γ
n ∥v̂n − w∥ = Op(1).

Applying the Cauchy–Schwarz inequality to (C.24), we obtain

|Zn(p, t) − Zn(q, t))| ≤ a1/γn ∥v̂n − w∥∥p − q∥.

Now, we apply Lemma C.4 with Bn = a1/γn ∥v̂n − w∥ and
h(x) = x. This ensures that {Zn(·, t), n ≥ 1} is stochastically
equicontinuous. Thus, {Zn(·, t), n ≥ 1} is tight. Note that a tight
sequence that is weakly converging in finite dimension weakly
converges in the uniformmetric (van der Vaart andWellner, 2000).
Thus, we obtain Zn(·, t)

u.d.
→ Z(·, t). The weak convergence of

the Hausdorff distances then follow from (2.7) and the continuous
mapping theorem. �

Appendix D. Proof of Theorems 3.2–3.4 and Corollaries 3.1–3.2

In this section, we give the proof of Theorems 3.2–3.4,
Corollaries 3.1–3.2 and auxiliary lemmas. Theorem 3.4 is proved
using a functional δ-method for directionally differentiable
functionals. For this, we need a suitable differentiability concept
of the map s(·, ΘI) → supp∈Sd−1⟨p, θ0⟩ − s(p, ΘI). The following
definition is based on Shapiro (1991).

Definition D.1. Let X and Y be normed vector spaces. A map g :

X → Y is said to beHadamard directionally differentiable atµ if for
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every sequence {tn} of positive numbers converging to 0 and any
sequence {xn} converging to x, the limit

ġ(x) = lim
n→∞

g(µ + tnxn) − g(µ)

tn
(D.1)

exists. If ġ is linear in x, then g is said to be Hadamard differentiable
at µ.

Proof of Theorem 3.2. For each t ∈ R+ and p ∈ Sd−1, let
Z∗

n,b,k(t) := a1/γb [s(p, Θ̂n,b,k(t)) − s(p, ΘI)]. For each x ∈ R and
t ∈ R+, let

Un,b(x, t) := N−1
n,b

Nn,b
k=1

1

sup
p∈Ψ0

Υ (Z∗

n,b,k(p, t)) ≤ x

. (D.2)

Let ϵ, δ > 0, and let K be the Lipschitz constant of Υ . Suppose
that supp∈Ψ0

Υ (Zn,b,k(p, t)) ≤ x, a1/γb dH(Θ̂n(t), ΘI) ≤ ϵ/2K ,
dH(Ψ̂n, Ψ0) ≤ δ, and sup∥p−p′∥≤δ |Zn,b,k(p, t) − Zn,b,k(p, t)| ≤

ϵ/2K . Then, it follows that sup
p∈Ψ̂n

Υ (Zn,b,k(p, t)) − sup
p∈Ψ0

Υ (Z∗

n,b,k(p, t))


≤

 sup
p∈Ψ̂n

Υ (Zn,b,k(p, t)) − sup
p∈Ψ0

Υ (Zn,b,k(p, t))


+

 sup
p∈Ψ0

Υ (Zn,b,k(p, t)) − sup
p∈Ψ0

Υ (Z∗

n,b,k(p, t))


≤

 sup
p∈Ψ̂n

Υ (Zn,b,k(p, t)) − sup
p∈Ψ0

Υ (Zn,b,k(p, t))


+ sup
p∈Sd−1

|Υ (Zn,b,k(p, t)) − Υ (Z∗

n,b,k(p, t))|. (D.3)

Let p̂n ∈ argmaxp∈Ψ̂n
Υ (Zn,b,k(p, t)), which is well defined by

the compactness of Ψ̂n and the continuity of the map p →

Υ (Zn,b,k(p, t)). Let ΠΨ0 p̂n be the projection of p̂n on Ψ0 and note
that ∥p̂n − ΠΨ0 p̂n∥ ≤ dH(Ψ̂n, Ψ0) ≤ δ. We then obtain,

sup
p∈Ψ̂n

Υ (Zn,b,k(p, t)) − sup
p∈Ψ0

Υ (Zn,b,k(p, t))

≤ Υ (Zn,b,k(p̂n, t)) − Υ (Zn,b,k(ΠΨ0 p̂n, t))

≤ sup
∥p−p′∥≤δ

|Υ (Zn,b,k(p, t)) − Υ (Zn,b,k(p′, t))|. (D.4)

A similar argument gives

sup
p∈Ψ0

Υ (Zn,b,k(p, t)) − sup
p∈Ψ̂n

Υ (Zn,b,k(p, t))

≤ sup
∥p−p′∥≤δ

|Υ (Zn,b,k(p, t)) − Υ (Zn,b,k(p′, t))|. (D.5)

(D.4) and (D.5) then imply sup
p∈Ψ̂n

Υ (Zn,b,k(p, t)) − sup
p∈Ψ0

Υ (Zn,b,k(p, t))


≤ sup
∥p−p′∥≤δ

|Υ (Zn,b,k(p, t)) − Υ (Zn,b,k(p′, t))|

≤ K sup
∥p−p′∥≤δ

|Zn,b,k(p, t) − Zn,b,k(p′, t)| ≤
ϵ

2
, (D.6)

by the Lipschitz continuity of Υ and the hypothesis. Further-
more, the Lipschitz continuity of Υ and the hypothesis that
a1/γb dH(Θ̂n(t), ΘI) ≤ ϵ/2K ensure

sup
p∈Sd−1

|Υ (Zn,b,k(p, t)) − Υ (Z∗

n,b,k(p, t))|

≤ K sup
p∈Sd−1

a1/bb |s(p, Θ̂n(t)) − s(p, ΘI)| ≤
ϵ

2
. (D.7)

Combining Eqs. (D.3)–(D.7) yields | supp∈Ψ̂n
Υ (Zn,b,k(p, t)) −

supp∈Ψ0
Υ (Z∗

n,b,k(p, t))| ≤ ϵ. Therefore, we have supp∈Ψ0
Υ (Z∗

n,b,k
(p, t)) ≤ x + ϵ. Now define the following event:

En,b(t, ϵ, δ) :=


ω ∈ Ω : a1/γb dH(Θ̂n(t), ΘI) ≤ ϵ/2K ,

dH(Ψ̂n, Ψ0) ≤ δ,

sup
∥p−p′∥≤δ

|Zn,b,k(p, t) − Zn,b,k(p, t)| ≤ ϵ/2K

. (D.8)

The arguments above ensure that the following inequality holds:

F̂n,b(x, t)1En,b(t,ϵ,δ) ≤ Un,b(x + ϵ, t). (D.9)

Now, suppose on the other hand that supp∈Ψ0
Υ (Z∗

n,b,k(p, t)) ≤

x − ϵ and that ω ∈ En,b(t, ϵ, δ). Then, using the same argument as
above, it is straightforward to show that sup
p∈Ψ̂n

Υ (Zn,b,k(p, t)) − sup
p∈Ψ0

Υ (Z∗

n,b,k(p, t))
 ≤ ϵ. (D.10)

Hence, we have supp∈Ψ̂n
Υ (Zn,b,k(p, t)) ≤ x. Therefore, we obtain

the following inequality:

Un,b(x − ϵ, t)1En,b(t,ϵ,δ) ≤ F̂n,b(x, t)1En,b(t,ϵ,δ). (D.11)

By CHT’s Theorem3.1 (1), the assumption that dH(Ψ̂n, Ψ0) = op(1),
and the stochastic equicontinuity of {Zn,b,k(·, t)}, (D.9) and (D.11)
hold for any ϵ, δ > 0 and P(En,b(t, ϵ, δ)) → 1 as n → ∞ and
b → ∞. Hence, for any ϵ > 0, we have

Un,b(x − ϵ, t) ≤ F̂n,b(x, t) ≤ Un,b(x + ϵ, t), (D.12)

with probability tending to 1. Now it is straightforward to show
Un,b(x−ϵ, t) = F(x, t)+op(1) for each continuity point x of F(·, t)
by an argument similar to the proof of Theorem 2.2.1 (i) in Politis
et al. (1999). Therefore,

F(x − ϵ, t) − ϵ ≤ F̂n,b(x, t) ≤ F(x + ϵ, t) + ϵ,

with probability tending to 1 for any ϵ > 0. Now, let ϵ ↓ 0 so
that x ± ϵ are continuity points of F→(·, P). Then, the conclusion
follows. �

Proof of Corollary 3.1. (i) Let F̂→
n (·, t) be the empirical cdf

of T→
n (t). Similarly, for each t , let F→(·, t) be the cdf of

supp∈Sd−1{−Z(p, t)}+. Let Υ (x) = {−x}+ and Ψ0 = Ψn = Sd−1.
By Theorem 3.2, it follows that F̂→

n (x, t) − F→(x, t) = op(1) at
every continuity point of F→(·, t).

Note that the map x → F→(x, t) is right continuous with a left
limit. Hence, for any ϵ > 0, there is ηϵ > 0 such that

|F→(x, t) − F→(c→

1−α(t), t)| < ϵ,

∀x ∈ (c→

1−α(t), c→

1−α(t) + ηϵ) (D.13)

|F→(x, t) − L| < ϵ, ∀x ∈ (c→

1−α(t) − ηϵ, c→

1−α(t)), (D.14)

where L = limc↑c→1−α
(t) F→(c, t) is the left limit of F→ at c→

1−α(t).
Hence, there are continuity points c0, c1 of F→(·, t) such that c1 <
c→

1−α(t) < c0. Below, we take c0 and c1 such that c0−c1 = δ, where
δ is the constant specified in the corollary. By c1 < c→

1−α(t), it must
be the case that

F→(c1, t) < 1 − α, (D.15)
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because otherwise we must have c1 ≥ c→

1−α(t) by c→

1−α(t) being
the infimum of c such that F→(c, t) ≥ 1 − α. Since c1 is a
continuity point of F→(·, t) and F̂→

n (x, t) − F→(x, t) = op(1) at
each continuity point of F→(·, t), it then follows that

F̂→

n (c1, t) < 1 − α, wp → 1. (D.16)

This in turn implies

c1 < inf{c ∈ R : F̂→

n (c, t) ≥ 1 − α} = ĉ→

n,b,1−α(t), wp → 1.
(D.17)

For each n, let An be defined by

An := {ω ∈ Ω : c1 < ĉ→

n,b,1−α(t)}

= {ω ∈ Ω : c0 < ĉ→

n,b,1−α(t) + δ}, (D.18)

where the second equality follows from c1 = c0−δ. Nownote that:

P(T→

n (t) > ĉ→

n,b,1−α(t) + δ)

≤ P({T→

n (t) > ĉ→

n,b,1−α(t) + δ} ∩ An) + P(Ac
n)

≤ P(T→

n (t) > c0) + P(Ac
n). (D.19)

Then, we obtain

lim sup
n→∞

P(T→

n (t) > ĉ→

n,b,1−α(t) + δ)

≤ lim sup
n→∞

P(T→

n (t) > c0) + lim sup
n→∞

P(Ac
n)

≤ lim sup
n→∞

P(T→

n (t) ≥ c0) + lim sup
n→∞

P(Ac
n)

(1)
≤ P


sup
p∈Sl

{−Z(p, t)}+ ≥ c0


(2)
= P


sup
p∈Sl

{−Z(p, t)}+ > c0


= 1 − F→(c0, t)

≤ 1 − F→(c→

1−α(t), t) ≤ α (D.20)

where (1) follows from T→
n (t)

d
→ supp∈Sl{−Z(p, t)}+ and

P(Ac
n) → 0 by (D.17)–(D.18). Equality (2) follows from c0 being a

continuity point of F→(·, t), and the rest follows from c0 > c→

1−α(t)
and the definition of c→

1−α(t).
Part (ii) follows from the fact that T→

n (t) = supp∈Sl{−Zn(p, t)+

a1/γn (s(p, Θ0) − s(p, ΘI))}+
p

→ ∞ under a fixed alternative and
that c̃n,b,1−α(t) = Op(1). �

We use the following two lemmas (Lemmas D.1 and D.2) to
show Theorem 3.3.

Lemma D.1. Suppose the conditions of Theorem 3.1 are satisfied.
Then, for any 0 ≤ t < t ′ ≤ t∗1−α ,

0 = c→

1−α(t∗1−α) ≤ c→

1−α(t ′) ≤ c→

1−α(t) ≤ c→

1−α(0). (D.21)

Proof of Lemma D.1. First, c→

1−α(t∗1−α) = 0 follows from the
definition of t∗1−α . For the conclusion of the lemma, it suffices to
show that P


supp∈Sd−1{−Z(p, t)}+ ≤ x


is non-decreasing in t for

each x. As this is a distributional property of the process Z(p, t), it
suffices to show that the statement above holds for the following
representation:

− Z(p, t) = − sup
θ∈H(p,ΘI )

sup
λ∈{λ:ℓ∞(θ,λ)≤t}

⟨p, λ⟩. (D.22)

As {λ : ℓ∞(θ, λ) ≤ t} ⊆ {λ : ℓ∞(θ, λ) ≤ t ′} for any 0 ≤

t < t ′ ≤ t∗1−α and for each p ∈ Sd−1, −Z(p, t) is non-increasing
in t . This implies that supp∈Sd−1{−Z(p, t)}+ is non-increasing in t
for anyω. Thus, P


supp∈Sd−1{−Z(p, t)}+ ≤ x


is non-decreasing in

t ∈ [0, t∗1−α] for each x. �
Lemma D.2. Suppose the conditions of Theorem 3.3 hold. Then, for
any α ∈ (0, 1) and 0 ≤ t < t ′ ≤ t∗1−α , c

→

1−α(t) − c→

1−α(t ′) =

µ(t ′) − µ(t).

Proof of Lemma D.2. First, c→

1−α(t) can be written as

c→

1−α(t) = inf

x : P


sup

p∈Sd−1
{−Z(p, t)}+ ≤ x


≥ 1 − α


= inf


x : P


sup

p∈Sd−1
{µ(t ′) − µ(t) − µ(t ′) − Z∗(p)}+ ≤ x


≥ 1 − α


. (D.23)

Let ∆(t, t ′) := µ(t ′) − µ(t). Then, for any x ≥ ∆(t, t ′), it follows
that

P


sup
p∈Sd−1

{µ(t ′) − µ(t) − µ(t ′) − Z∗(p)}+ ≤ x


= P


sup
p∈Sd−1

{∆(t, t ′) − Z(p, t ′)}+ ≤ x


= P


sup
p∈Sd−1

{−Z(p, t ′)}+ ≤ x − ∆(t, t ′)

. (D.24)

Substituting Eq. (D.24) into Eq. (D.23) yields

c→

1−α(t) = inf

x : P


sup

p∈Sd−1
{−Z(p, t ′)}+ ≤ x − ∆(t, t ′)


≥ 1 − α


= c→

1−α(t ′) + ∆(t, t ′). (D.25)

This establishes the claim of the lemma. �

Proof of Theorem 3.3. By Theorem in 1.1.12 in Li et al. (2002),

a1/γn dH

C1n(t), Θ̂n(t∗1−α)


= a1/γn sup

p∈Sd−1
|s(p, Θ̂n(t)) + ĉ→

n,b,1−α(t)/a1/γn − s(p, Θ̂n(t∗1−α))|

= sup
p∈Sd−1

|a1/γn [s(p, Θ̂n(t))

− s(p, ΘI)] − a1/γn [s(p, Θ̂n(t∗1−α)) − s(p, ΘI)] + c̃→

n,b,1−α(t)|
(1)
= sup

p∈Sd−1
|Zn(p, t) − Zn(p, t∗1−α) + c→

1−α(t) + op(1)|

(2)
= sup

p∈Sd−1
|µ(t) − µ(t∗1−α) − (c→

1−α(t∗1−α) − c→

1−α(t)) + op(1)|

= op(1), (D.26)

where (1) follows from c̃→

n,b,1−α(t) = ĉ→

n,b,1−α(t) by assumption
and ĉ→

n,b,1−α(t) = c→

1−α(t) + op(1) by F→(·, t) being assumed to
be continuous and strictly increasing at c→

1−α(t) and Lemma 11.2.1
in Lehmann and Romano (2005). In (2), we used the fact that
c→

1−α(t∗1−α) = 0. The last equality follows from Lemma D.2.
For (ii), the result immediately follows from Theorem 3.3(i) and

the triangle inequality:

dH

C1n(t), C1n(t ′)


≤ dH


C1n(t), Θ̂n(t∗1−α))


+ dH


C1n(t ′), Θ̂n(t∗1−α))


. (D.27)

This establishes the claim of the theorem. �

We use the following two lemmas (Lemmas D.3 and D.4) to
show Theorem 3.4.

Lemma D.3. Let S be a compact subset of a finite dimensional
Euclidean space. Let B ≡ C(S) be the space of continuous functions on
S. For a given g ∈ B, let φg : B → R be defined pointwise byφg(x) :=

supp∈S g(p)− x(p). Then, for any x ∈ B, φg is Hadamard directionally
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differentiable at x, and its directional derivative φ̇g : B → R is given
pointwise by

φ̇g(y) := sup
p∈Ψ (g−x)

−y(p), (D.28)

where for each z ∈ B, Ψ (z) := argmaxp∈Sz(p). Furthermore, if
Ψ (g − x) is singleton-valued, φg is Hadamard differentiable at x.

Proof of Lemma D.3. The proof is amodification of Theorem3.1 in
Shapiro (1991). First, we show that φ̇g is a continuous functional.
Let {yn} be a sequence such that yn → y for some y ∈ B. Note
that Ψ (g − x) is nonempty and compact by Theorem 17.31 in
Aliprantis and Border (2006). Since−yn converges uniformly to−y
on Ψ (g − x), maxp∈Ψ (g−x) −yn(p) → maxp∈Ψ (g−x) −y(p). Since the
choice of y was arbitrary, φ̇g is continuous at every point.

For each p, let fp : B → R be defined pointwise by fp(x) :=

g(p)−x(p). This is a convex functional on B. Since φg is a pointwise
supremum of a family of convex functionals, it is convex. Let B∗

be the dual space of B. For each p, the subdifferential of fp at y is
defined as ∂ fp(y) := {f ′

p ∈ B∗
: fp(z) ≥ fp(y) + f ′

p(z − y), ∀z ∈

B}. We claim that for every y, ∂ fp(y) = {−ep}, where ep is the
evaluation map defined by ep(z) = z(p) for every z ∈ B. To
prove this claim, first note that −ep ∈ ∂ fp(z) is obvious. Now
suppose there exists f ′

p ∈ ∂ fp(y) such that f ′
p ≠ −ep. Then, fp(z) ≥

fp(y) + f ′
p(z − y) implies that y(p) − z(p) ≥ f ′

p(z − y). Since z can
be taken arbitrarily, we must have

w(p) ≥ f ′

p(−w) for all w ∈ B. (D.29)

Furthermore, since f ′
p ≠ −ep, there exists a w ∈ B such that

w(p) > f ′
p(−w). Let w′

:= y − w. Then, w′(p) = y(p) − w(p) <

y(p) − f ′
p(−w) = y(p) + f ′

p(w) = y(p) + f ′
p(y − w′), which

contradicts (D.29). Therefore, −ep is the unique element of ∂ fp(y).
Fix y ∈ B. We note that S is a compact subset of a Hausdorff

space and that fp is continuous for every p ∈ S. Furthermore, for
any p ∈ S and {pn} ⊂ S such that pn → p, it follows that fpn(y) =

y(pn) → y(p) = fp(y) by the continuity of y. Therefore p → fp(y)
is continuous at every y. Now the conditions of Theorem 2.4.18 in
Zalinescu (2002) are satisfied. This implies that the subdifferential
of φg at y takes the form:

∂φg(y) = co

 ∪
fp=sup

p∈S
fp

∂ fp(y)

 = co


∪
p∈Ψ (g−x)

{−ep}


, (D.30)

where co(A) and co(A) denote the closed convex hull and convex
hull of a set A respectively. Here, the closure is taken with respect
to the weak-∗ topology. In the above expression, we used the fact
that the set C := co(∪p∈Ψ (g−x){−ep}) is closed, which we prove
below. Let {ẽn} be a sequence such that ẽn ∈ C, ∀n and ẽn → ẽ
for some ẽ ∈ B∗. Then, by the convexity of C , we may write
ẽn = λn(−epn)+ (1−λn)(−ep′

n
) for some sequence {(λn, pn, p′

n) ∈

[0, 1] × Ψ (g − x)2}. Since [0, 1] × Ψ (g − x)2 is compact, for any
subsequence of {(λn, pn, p′

n)}, there exists a further subsequence
{(λnkj

, pnkj , p
′
nkj

)} such that (λnkj
, pnkj , p

′
nkj

) → (λ∗, p∗, p∗∗) for

some (λ∗, p∗, p∗∗) ∈ [0, 1] × Ψ (g − x)2. For each y ∈ B, it follows
that

ẽnkj (y) = λnkj
(−y(pnkj )) + (1 − λnkj

)(−y(p′

nkj
))

→ λ∗(−y(p∗)) + (1 − λ∗)(−y(p∗∗))

= λ∗(−ep∗(y)) + (1 − λ∗)(−ep∗∗(y)) ∈ C, (D.31)
where the convergence follows from the continuity of y. Since the
choice of the subsequence and y was arbitrary, this ensures that
the limit ẽ belongs to C . Hence, C is closed.

By Theorem 23.2 in Rockafellar (1970), the Gateaux directional
derivative φ̇G

g : B → R of φg satisfies

φ̇G
g (y) = sup

φ′
g∈∂φg

φ′

g(y)

= sup
λ∈[0,1]

sup
p,p′∈Ψ (g−x)

λ(−y(p)) + (1 − λ)(−y(p′)). (D.32)

Now suppose that argmaxΨ (g−x) −y(p) = {p̄} for some p̄ ∈ Ψ (g −

x), then the right hand side of (D.32) is equal to −y(p̄). Therefore,
in this case φ̇G

g (y) = −y(p̄) = supp∈Ψ (g−x) −y(p). Similarly if
argmaxΨ (g−x) − y(p) is not a singleton, then again the right hand
side of (D.32) is equal to −y(p̄) for some p̄ ∈ Ψ (g − x) because
−y(p̄) ≥ λ(−y(p̄)) + (1 − λ)(−y(p)) for all λ ∈ [0, 1] and p, and
equality holds only if p is also in argmaxΨ (g−x) − y(p). Therefore,
it follows again that φ̇G

g (y) = supp∈Ψ (g−x) −y(p). This establishes
that φ̇g in (D.28) is the Gateaux directional derivative of φg .

Nowwe show that the Gateaux directional derivative is actually
theHadamarddirectional derivative. For any x, y ∈ B, if∥x−y∥∞ ≤

δ, then g(p)− x(p)− δ ≤ g(p)−y(p) ≤ g(p)− x(p)+ δ uniformly.
Therefore, |φg(x) − φg(y)| ≤ δ. This ensures that φg is Lipschitz
with Lipschitz constant 1. Let {tn} be a sequence such that tn ↓ 0.
Let K be a compact subset of B. For each y ∈ K , it follows that
hn(y) := [φg(x + tny) − φg(x)]/tn − φ̇G

g (y) = o(1) because φ̇G
g is

the Gateaux directional derivative. Furthermore, for any y, y′
∈ K ,

|hn(y) − hn(y′)| = |[φg(x + tny) − φg(x + tny′)]/tn − φ̇G
g (y − y′)|

≤ ∥x + tny − (x + tny′)∥∞/tn + ∥y − y′
∥∞

= 2∥y − y′
∥∞. (D.33)

Therefore, hn is also Lipschitz. This implies that the family {hn} is
equicontinuous onK . Since hn → 0 pointwise, this ensures hn → 0
uniformly over K . Since K was arbitrary, this ensures that φ̇G

g is the
Hadamard directional derivative of φg . This completes the proof of
the first claim.

If Ψ (g − x) is singleton-valued, then φ̇g(az + by) = −az(p∗) −

by(p∗) = aφ̇g(z) + bφ̇g(y) for all a, b ∈ R and z, y ∈ B, where
p∗ is the unique element of Ψ (g − x). Therefore, the second claim
follows. �

Lemma D.4. Let m ∈ N. Let D ⊂ Rm be a compact convex set
with a nonempty interior. Let K0 be a nonempty closed convex subset
of D and {K̂n} be a sequence of measurable closed convex subsets of
D. Given a positive sequence {τn} such that τn → ∞, let Wn :=

τn(s(·, K̂n) − s(·, K0)). Given x0 ∈ ∂K0, let

S→

n,x0 := τn sup
p∈Sm−1

{⟨p, x0⟩ − s(p, K̂n)}+ (D.34)

and

L0 := argmax
p∈Sm−1

⟨p, x0⟩ − s(p, K0). (D.35)

Suppose that Wn converges weakly to a tight random element W as
n → ∞. Then,

S→

n,x0
d

→ sup
p∈L0

{−W(p)}+. (D.36)

Proof of Lemma D.4. We first note that x0 ∈ ∂K0 implies
supp∈Sm−1⟨p, x0⟩− s(p, K0) = 0. Let φx0 : C(Sm−1) → R be defined
pointwise by φx0(f ) := supp∈Sm−1⟨p, x0⟩ − f (p). Now the statistic
can be written as

S→

n,x0 = max{τn(φx0(s(·, K̂n)) − φx0(s(·, K0)), 0}. (D.37)
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By Lemma D.3, φx0 is Hadamard directionally differentiable
at s(·, K0) with Hadamard directional derivative φ̇x0(y) =

supp∈L0 −y(p). This and the assumption that Wn
u.d.
→ W ensure the

conditions of Theorem 2.1 in Shapiro (1991). It follows that

τn(φx0(s(·, K̂n)) − φx0(s(·, K0))
d

→ sup
p∈L0

−W(p). (D.38)

The conclusion of the lemma now follows from (D.37), (D.38), and
the continuous mapping theorem. �

Proof of Theorem 3.4. Let t ≥ 0. We apply Lemma D.4 with D =

Θ , K0 = ΘI , K̂n = Θ̂n(t), and τn = a1/γn . Under our hypothesis,
Theorem 3.1 holds. The conclusion of Theorem 3.1 ensures that
Wn = a1/γn (s(p, Θ̂n(t)) − s(p, Θ0)) converges weakly to a tight
limit W = Z(·, t). By setting x0 = θ0 and L0 = Ψ0, Lemma D.4
then ensures T→

n,θ0
d

→ supp∈Ψ0
{−Z(p, t)}+. This completes the

proof. �

Lemma D.5. Let m ∈ N. Let D ⊂ Rm be a compact convex set with
a nonempty interior. Let K0 be a nonempty closed convex subset of D
and {K̂n} be a sequence of measurable closed convex subsets of D such
that

dH(K̂n, K0) = Op(a−1/γ
n ), (D.39)

for some constant γ > 0 and positive sequence {an} such that an →

∞. Given x0 ∈ D, let

L0 := argmax
p∈Sm−1

⟨p, x0⟩ − s(p, K0). (D.40)

Given a positive sequence {κn}, let

L̂n :=


p ∈ Sm−1

: ⟨p, x0⟩ − s(p, K̂n)

≥ sup
p′∈Sm−1

[⟨p′, x0⟩ − s(p′, K̂n)] − κn/a1/γn


. (D.41)

Suppose κn → ∞ and κn/a
1/γ
n → 0. Then, dH(L̂n, L0) = op(1).

Proof of Lemma D.5. We use Theorem 3.1 in Chernozhukov et al.
(2007) to prove the claim. First note that Sm−1 is nonempty
and compact. Let Q and Qn be defined pointwise by Q(p) :=

[s(p, K0) − ⟨p, x0⟩] − infp′∈Sm−1 [s(p′, K0) − ⟨p′, x0⟩] and Qn(p) :=

[s(p, K̂n) − ⟨p, x0⟩] − infp′∈Sm−1 [s(p′, K̂n) − ⟨p′, x0⟩]. We here note
that infp′∈Sm−1 [s(p′, K0)−⟨p′, x0⟩] is finite, and infp′∈Sm−1 [s(p′, K̂n)−

⟨p′, x0⟩] is finite almost surely due to the continuity of the objective
functions (almost surely for the latter) and Sm−1 being compact.
Note also that L0 and L̂n can be equivalently written as

L0 = argmin
p∈Sm−1

Q(p) = {p ∈ Sm−1
: Q(p) = 0},

L̂n = {p ∈ Sm−1
: Qn(p) ≤ κn/a1/γn }.

(D.42)

Since s(p, K0) is continuous by Theorem1.1.12 in Li et al. (2002),
Q is continuous. Similarly, since s(p, K̂n) is continuous in p for each
ω ∈ Ω and measurable for each p, s(p, K̂n) is jointly measurable
by Lemma 4.51 in Aliprantis and Border (2006). Furthermore,
infp′∈Sm−1 [s(p′, K̂n) − ⟨p′, x0⟩] is measurable by Theorem 2.27(i) in
Molchanov (2005). Thus, Qn is jointly measurable.

By (D.39) and Theorem 1.1.12 in Li et al. (2002), s(·, K̂n)
− s(·, K0) = op(1) uniformly. Therefore, for any ϵ > 0,
supp∈Sm−1 |s(·, K̂n) − s(·, K0)| < ϵ/2 with probability approaching
1. This implies that, with probability approaching 1,

sup
p∈Sm−1

|Qn(p) − Q(p)|

≤ sup
p∈Sm−1

|s(·, K̂n) − s(·, K0)| +

 inf
p′∈Sm−1

[s(p′, K̂n) − ⟨p′, x0⟩]

− inf
p′∈Sm−1

[s(p′, K0) − ⟨p′, x0⟩]


<
ϵ

2
+

 inf
p′∈Sm−1

[s(p′, K0) +
ϵ

2
− ⟨p′, x0⟩]

− inf
p′∈Sm−1

[s(p′, K0) − ⟨p′, x0⟩]
 = ϵ. (D.43)

Thus Qn − Q = op(1) uniformly. Furthermore, uniformly over L0,
Qn(p) = [s(p, K0) + Op(a

−1/γ
n ) − ⟨p, x0⟩] − infp′∈Sm−1 [s(p′, K0) +

Op(a
−1/γ
n ) − ⟨p′, x0⟩] = Op(a

−1/γ
n ), where the first equality follows

from (D.39), and the second equality follows from the construction
of L0. Hence, under our hypothesis, κn ≥ supp∈L0 a

1/γ
n Qn(p) with

probability approaching 1. Therefore, all required conditions for
Theorem 3.1(1) in Chernozhukov et al. (2007) are satisfied. This
ensures the claim of the lemma. �

Proof of Corollary 3.2. (i) Let F̂→
n (x, θ0, t) be the empirical cdf of

T→

n,θ0
(t). Similarly, let F→(x, θ0, t)be the cdf of supp∈Ψ0

{−Z(p, t)}+.
Note that dH(Ψ0, Ψ̂n) = op(1) by Theorem 3.1 of CHT and
Lemma D.5 applied with K0 = ΘI , K̂n = Θ̂n(t), L0 = Ψ0, and
L̂n = Ψ̂n. Thus, by Theorem 3.2 with Υ (x) = {−x}+, Ψ0 =

argmaxp⟨p, θ0⟩ − s(p, ΘI), and Ψ̂n as in (3.21), F̂→
n (x, θ0, t) −

F→(x, θ0, t) = op(1) at each continuity point of F→(·, θ0, t). The
rest of the proof is similar to that of Corollary 3.1 and is therefore
omitted. �

Appendix E. Proof of Theorem 4.1 and Corollaries 4.1 and E.1

In this section, we give the proof of Theorem 4.1, Corollaries 4.1
and E.1 and auxiliary lemmas. In what follows, we use the notation
introduced in Section 4.1. Recall that Π(θ) = ∇θE[mθ ], and G(θ)
is a vector of Gaussian processes on Θ whose covariance kernel is
K(θ, θ ′) = E[(mθ − E[mθ ])(mθ ′ − E[mθ ′ ])′]. ς is a J-dimensional
vector whose jth component is such that ςj(θ) = 0 if E[mj,θ ] = 0,
ςj(θ) = −∞ if E[mj,θ ] < 0, and ςj(θ) = ∞ if E[mj,θ ] > 0, and
W (θ) is a J × J positive definite matrix.

Lemma E.1. Define

fn(θ, λ, x) ≡ ∥W 1/2(θ){(G(θ) + Π(θ)λ +
√
nEmθ ) + x}∥2

+
,

g(θ, λ, x) ≡ ∥W 1/2(θ){(G(θ) + Π(θ)λ + ς(θ)) + x}∥2
+
.

Then, the following approximation holds.

inf
Rn,u,p

ℓn(θ, λ)
d
= inf

Rn,u,p
fn(θ, λ, op(1)) = inf

Ru,p
g(θ, λ, op(1)). (E.1)

Proof of Lemma E.1. The proof is analogous to that of Lemma A.1
in CHT. The first equality in (E.1) follows by arguing as in Step 2 in
the proof of Theorem 4.2 in CHT. For the second equality, we take
the following three steps.
Step 1: For any ϵ > 0, by Step 1 in the proof of Lemma A.1 in CHT,
we have

g(θ, λ,−ϵ) ≤ fn(θ, λ,−ϵ) ≤ ℓn(θ, λ) ≤ fn(θ, λ, ϵ),

with probability approaching 1. Therefore, for some ϵn ↓

0, infRn,u,p g(θ, λ,−ϵn) ≤ infRn,u,p fn(θ, λ, ϵn) with probability
approaching 1.
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Step 2: For any ϵn ↓ 0 or ϵn ↑ 0, we have infRn,u,p g(θ, λ, ϵn) ≥

infRu,p g(θ, λ, ϵn) by Rn,u,p ⊂ Ru,p for all n.
Step 3: The claim of this step is that for some ϵ′

n ↓ 0,

inf
Rn,u,p

fn(θ, λ, ϵ′

n) ≤ inf
Ru,p

g(θ, λ, ϵ′

n), wp → 1.

The proof is by contradiction. For this, we note that for any θn →

θ ∈ ΘI , it holds that

lim sup
n→∞

√
nE[mj,θn ] ≤ ςj(θ), if ςj(θ) = 0

= ςj(θ), if ςj(θ) = −∞. (E.2)

Now suppose that the claim of this step does not hold. Then, there
exist a constant ϵ > 0 and a subsequence {n′

} of {n} such that

lim
n′→∞

[fn′(θn′ , λn′ , ϵ′

n′) − inf
Ru,p

g(θ, λ, ϵ)] > 0 (E.3)

with probability 1. Passing to a further subsequence if necessary,
we may let (θn′ , λn′) be such that (θn′ , λn′) converges to some
(θ∗, λ∗) ∈ Ru,p. By the definition of fn and g , the inequality in (E.3)
only occurs if lim supn′→∞

√
n′E[mj,θn′ ] > ςj(θ

∗) for some j, which
is a contradiction to (E.2).

Finally, combining Steps 1–3, the claim of the lemma
follows. �

Lemma E.2. Suppose Assumptions 4.1–4.4 hold. Let {δn} be a
sequence {δn ∈ RJ

} such that ∥δn∥ = op(1). Then, for each (u, p) ∈

R × Sd−1 and any ϵ > 0, there exists a compact set R̄u,p ⊂ Ru,p and
Nϵ such that

P

 infRu,p
g(θ, λ, δn) − inf

R̄u,p
g(θ, λ, δn)

 ≥ ϵ


≤ ϵ, for all n ≥ Nϵ .

Proof of Lemma E.2. Let An ≡ argminRu,pg(θ, λ, δn). For any
(θ∗, λ∗) ∈ An, we therefore have

inf
Ru,p

g(θ, λ, δn)

= ∥W 1/2(θ∗){(G(θ∗) + Π(θ∗)λ∗
+ ς(θ∗)) + δn}∥

2
+
. (E.4)

Let δj,n be the jth component of δn. Since ςj(θ
∗) = −∞ for all

j ∉ J(θ∗), it follows that

Πj(θ
∗)λ∗

= vj,n, vj,n := −Gj(θ
∗) − δj,n ∀j ∈ J(θ∗). (E.5)

Since Assumption 4.4(iii) ensures the Slater condition for the
convex programming problem in (4.6), there exist Karush–Kuhn–
Tucker multipliers {ηj(θ

∗)}j∈J(θ∗) such that p =


j∈J(θ∗) ηj(θ
∗)

Πj(θ
∗)′. This and (E.5) imply that

⟨p, λ∗
⟩ =


j∈J(θ∗(p))

ηj(θ
∗)Πj(θ

∗)λ∗
=


j∈J(θ∗)

ηj(θ
∗)vj,n. (E.6)

Hence, for any (θ∗, λ∗) ∈ An, λ∗ is on the hyperplane defined
by (E.6). In particular, the minimum norm solution λ∗∗

≡
j∈J(θ∗) ηj(θ

∗)vj,np is also on this hyperplane, and (θ∗, λ∗∗) ∈ An.
Note that ∥λ∗∗

∥ = |


j∈J(θ∗) ηj(θ
∗)vj,n| = Op(1) by δj,n = op(1)

and G being tight by Assumption 4.2. Let BM = {λ : ∥λ∥ ≤ M}

withM > 0 and let R̄u,p ≡ H(p, ΘI) × (Ku,p ∩ BM). Then, by taking
M sufficiently large, one may let P(An ∩ R̄u,p) ≥ P((θ∗, λ∗∗) ∈

R̄u,p) ≥ 1 − ϵ for n sufficiently large. This means that the infimum
of g(θ, λ, δn) over Ru,p is also achieved on R̄u,p with probability
approaching 1. Therefore, there exists Nϵ such that

P

 infRu,p
g(θ, λ, δn) − inf

R̄u,p
g(θ, λ, δn)

 ≥ ϵ


≤ ϵ, for all n ≥ Nϵ .

This establishes the claim of the lemma. �
Proof of Theorem 4.1. It is straightforward to show that Assump-
tions 4.1–4.3 imply Assumptions 2.1–2.3 using the argument in the
proof of Theorem 4.2 in CHT. Hence, it is omitted for brevity. We
now show Assumption B.1. First, by Assumption 4.4(iii), for any
θ ∈ ΘI , we have Ku,p ∩

√
n(Θ − θ) → Ku,p. Hence, Assump-

tion B.1(i) holds with Ru,p = H(p, ΘI) × Ku,p.
Assumption B.1(ii) then follows from the following steps.

Step 1: Let {δn} be a sequence {δn ∈ RJ
} such that ∥δn∥ = op(1).

The claim of this step is that for compact set R̄u,p and ϵ > 0, we
may approximate inf(θ,λ)∈R̄u,p g(θ, λ, δn) by inf(θ,λ)∈M(ϵ) g(θ, λ, δn)

where M(ϵ) is a finite set. Note that

inf
R̄u,p

g(θ, λ, δn)

= inf
(θ,λ)∈R̄u,p

∥W 1/2(θ){G(θ) + Π(θ)λ + ς(θ) + δn}∥
2
+

= min
J

inf
(θ,λ)∈R̄u,p,J

∥W 1/2
J (θ){GJ(θ) + ΠJ(θ)λ + δJ,n}∥

2
+
.

By the stochastic equicontinuity of (θ, λ) → (G(θ), Π(θ)λ,

W (θ)), there is a finite subset M(ϵ) of R̄u,p such that

P

 inf
(θ,λ)∈R̄u,p

g(θ, λ, δn) − inf
(θ,λ)∈M(ϵ)

g(θ, λ, δn)

 ≥ ϵ


≤ ϵ

for all n sufficiently large.

Step 2: Now let (u, p) ∈ R×Sd−1. Then, for some {δn} be a sequence
{δn ∈ RJ

}, we have

lim inf
n→∞

P(inf
Ru,p

ℓn(θ, λ) > t)

(i)
= lim inf

n→∞
P(inf

Ru,p
g(θ, λ, δn) > t)

(ii)
≥ lim inf

n→∞
P(inf

R̄u,p
g(θ, λ, δn) > t + ϵ/2) − ϵ/2

(iii)
≥ lim inf

n→∞
P( inf

M(ϵ)
g(θ, λ, δn) > t + ϵ) − ϵ

(iv)

≥ P( inf
M(ϵ)

ℓ∞(θ, λ) > t + ϵ) − ϵ

(v)

≥ P(inf
Ru,p

ℓ∞(θ, λ) > t + ϵ) − ϵ, (E.7)

where (i) follows from Lemma E.1, (ii) follows from Lemma E.2,
(iii) follows from Step 2 (finite-dimensional approximability), (iv)
follows from the fact that g(θ, λ, δn) converges to ℓ∞ in finite
dimension, and (v) follows from M(ϵ) ⊂ R̄u,p ⊂ Ru,p. Since ϵ is
arbitrary, we have lim infn→∞ P(infRu,p ℓn > t) ≥ P(infRu,p ℓ∞ >

t). Similarly, one may show lim supn→∞ P(infRou,p ℓn ≥ t) ≤

P(infRou,p ℓ∞ ≥ t). The joint convergence of {infRu,pj ℓn,m =

1, . . . ,M} follows similarly. This establishes Assumption B.1(ii).
Finally, we may write

ℓ∞(θ, λ) = ∥W 1/2(θ){G(θ) + Π(θ)λ + ς(θ)}∥2
+

= ∥W 1/2
J(θ)(θ){GJ(θ)(θ) + ΠJ(θ)(θ)λ}∥

2
+
, (θ, λ) ∈ ΘI

× Rd. (E.8)

This implies that, for each θ ∈ H(p, ΘI), the set of directions
of recessions (see Rockafellar, 1970, Sec. 27) for λ → ℓ∞(θ, λ)

is {λ : Πj(θ)′λ ≤ 0, j ∈ J(θ)}. The first order condition to
the convex programming problem (4.6) implies that there exists
positive constants (KKT multipliers) {ηj(θ

∗)}j∈J(θ∗(p)) such that
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p =


j∈J(θ) ηj(θ)Πj(θ)′. Hence, Πj(θ)′λ ≤ 0, j ∈ J(θ) implies
⟨p, λ⟩ ≤ 0. This and the compactness of ΘI imply that the set
of directions of recessions is a subset of {0} × {λ : ⟨p, λ⟩ ≤

0}. Again, by compactness of H(p, ΘI), the set of directions of
recessions of Ru,p is {0} × {λ : ⟨p, λ⟩ ≥ 0}. By Theorem 27.3
in Rockafellar (1970), ℓ∞ then achieves its minimum on Ru,p.
Similarly, the set {(θ, λ) : θ ∈ H(p, ΘI), ℓ∞(θ, λ) ≤ t, } has
the set of directions of recessions {0} × {λ : ⟨p, λ⟩ ≤ 0} by
the compactness of H(p, ΘI) and (E.8). On the other hand, the
objective function (θ, λ) → −⟨p, λ⟩ has the set of directions of
recessions Rd

× {λ : ⟨p, λ⟩ ≥ 0}. Hence, by Theorem 27.3 in
Rockafellar (1970), infθ∈H(p,ΘI ),λ∈Λθ,t −⟨p, λ⟩ is finite and achieves
its minimum. Hence, supθ∈H(p,ΘI )

s(p, Λθ,t) < ∞. This establishes
Assumption B.1(iii). �

Corollary E.1. Suppose Assumptions 4.1–4.3 and 4.5 hold. Then the
limiting process Z(·, t) can be represented as

Z(p, t) = sup
θ∈H(p,ΘI )


∥R(p, θ)∥t1/2 − ⟨R(p, θ),W 1/2

J(θ)(θ)GJ(θ)⟩

,

(E.9)

where R(p, θ) := W−1/2
J(θ)


ΠJ(θ)(θ)ΠJ(θ)(θ)′

−1
ΠJ(θ)(θ)p. Fur-

thermore, if the weighting matrix satisfies WJ(θ)(θ) = [ΠJ(θ)(θ)

ΠJ(θ)(θ)′]−1 for any θ ∈ ∂ΘI , the limiting process takes the form
Z(p, t) = µ(t) + Z∗(p) with µ(t) = t1/2 and

Z∗(p) = sup
θ∈H(p,ΘI )

−⟨[ΠJ(θ)(θ)ΠJ(θ)(θ)′]−1ΠJ(θ)(θ)p, GJ(θ)(θ)⟩.

Proof of Corollary E.1. Let s : ∂Θ × Rd
→ RJ(θ) be a vector-

valued mapping whose jth component is sj(θ, λ) = 1{Gj(θ) +

⟨Πj(θ), λ⟩ > 0}. The solution λ∗ to theminimization problem (4.7)
satisfies the following Karush–Kuhn–Tucker (KKT) conditionswith
probability 1, with a Lagrange multiplier µ > 0:

p = 2µΠJ(θ)(θ)′WJ(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗)

(E.10)

t = ∥W 1/2
J(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗)∥2. (E.11)

We can then solve (E.10) to obtain
W 1/2

J(θ)(θ)ΠJ(θ)(θ)ΠJ(θ)(θ)′W 1/2
J(θ)(θ)

−1W 1/2
J(θ)(θ)ΠJ(θ)(θ)p

= 2µW 1/2
J(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗). (E.12)

Let R(p, θ) be the left hand side of the equation above. Take
squared norms both sides to obtain

∥R(p, θ)∥2

= |2µ|
2
∥W 1/2

J(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗)∥2

= |2µ|
2t,

where the second equality follows from (E.11). Hence, we obtain

2µ = ∥R(p, θ)∥t−1/2. (E.13)

Plugging this into (E.12) gives

W 1/2
J(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗) =

R(p, θ)

∥R(p, θ)∥
t1/2.

(E.14)

Substituting (E.13) and (E.14) into (E.10) yields

p = Π ′

J(θ)W
1/2
J(θ)R(p, θ). (E.15)
Now, we can use this result to obtain

V(p, θ, t) = ⟨p, λ∗
⟩

=


Π ′

J(θ)W
1/2
J(θ)R(p, θ), λ∗


=


R(p, θ),W 1/2

J(θ)ΠJ(θ)λ
∗


=


R(p, θ),W 1/2

J(θ)(ΠJ(θ)λ
∗
◦ s(θ, λ∗))


=


R(p, θ),

R(p, θ)

∥R(p, θ)∥
t1/2

−W 1/2
J(θ)(θ)(GJ(θ) ◦ s(θ, λ∗))


= ∥R(p, θ)∥ t1/2 −


R(p, θ),W 1/2

J(θ)(θ)GJ(θ)


, (E.16)

where the fourth equality follows from the fact that R(p, θ) =

R(p, θ) ◦ s(θ, λ∗) by (E.12), and the fifth equality follows from
(E.14). Note thatΠJ(θ)(θ)ΠJ(θ)(θ)′ is invertible by Assumption 4.5.
Hence, ifW (θ) satisfiesWJ(θ)(θ) = (ΠJ(θ)(θ)ΠJ(θ)(θ)′)−1 for any
θ ∈ ∂ΘI , then

∥R(p, θ)∥2
= p′ΠJ(θ)(θ)′(ΠJ(θ)(θ)ΠJ(θ)(θ)′)−1ΠJ(θ)(θ)p. (E.17)

Note that Eq. (E.15) implies that p′p = p′ΠJ(θ)(θ)′(ΠJ(θ)(θ)

ΠJ(θ)(θ)′)−1ΠJ(θ)(θ)p = 1. Combining the results above
establishes ∥R(p, θ)∥ = 1. Therefore, the limiting process takes
the form Z(p, t) := µ(t) + Z∗(p) with µ(t) = t1/2 and

Z∗(p) = sup
θ∈H(p,ΘI )

−⟨R(p, θ),W 1/2
J(θ)(θ)GJ(θ)(θ)⟩

= sup
θ∈H(p,ΘI )

−⟨(ΠJ(θ)(θ)ΠJ(θ)(θ)′)−1ΠJ(θ)(θ)p, GJ(θ)(θ)⟩.

(E.18)

This establishes the claim of the corollary. �

For deriving the limiting distribution of CHT’s statistic, we
require the following regularity conditions.

Assumption E.1 (Local Process Regularity for QLR Statistic). (i) For
any finite sets U ⊂ R and S ⊂ Sd−1, (supR−

u,p
ℓn, (u, p) ∈ U ×

S)
d

→(supR−
u,p

ℓ∞, (u, p) ∈ U × S). (ii) For any 0 < ϵ, there exists
δ > 0 such that

lim
n→∞

P


sup
∥p−q∥<δ

 sup
R−
u,p

ℓn(θ, λ) − sup
R−
u,q

ℓn(θ, λ)

 ≥ ϵ


≤ ϵ, (E.19)

where R−
u,p := H(p, ΘI) × K−

u,p.

Assumption E.1(i) requires that the finite dimensional distribu-
tion of the supremum of ℓn over a class of sets converges to that of
ℓ∞. This is analogous to weak epiconvergence. We call this version
‘‘weak supconvergence’’ as it is close in spirit to Condition S.2 of
CHT. CHT’s QLR statistic can be written as

sup
θ∈ΘI

anQn(θ) = max


sup

θ∈∂ΘI

anQn(θ), sup
θ∈Θo

I

anQn(θ)


.

As the second term on the right hand side asymptotically vanishes
by Assumption 4.3, it suffices to study the first term. Using the local
process ℓn, define

Ln(p, u) := sup
θ∈H(p,ΘI )

sup
λ∈K−

u,p

ℓn(θ, λ),
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where K−
u,p := {λ ∈ Rd

: ⟨p, λ⟩ ≤ u}. Note that supp∈Sd−1 Ln
(p, 0) = supθ∈∂ΘI

anQn(θ). We therefore study the asymptotic be-
havior of the process Ln(·, u) to study that of the QLR statistic.

Lemma E.3. Suppose the conditions of Corollary E.1 hold. Sup-
pose Assumption E.1 holds. Then Ln(·, u)

u.d.
→ L(·, u) for each u, and

the process L can be represented as

L(p, u) = sup
θ∈H(p,ΘI )

∥R(p, θ)∥−1

×


R(p, θ),W 1/2

J(θ)(θ)GJ(θ)(θ)

+ u

2
+

. (E.20)

Proof of Lemma E.3. First, by the hypothesis that ℓn weakly

supconverges to ℓ∞, we have Ln(·, u)
f .d.
→ L(·, u) where

L(p, u) := sup
θ∈H(p,ΘI )

sup
λ∈K−

u,p

∥W 1/2(θ)(G(θ) + Π(θ) + ς(θ))∥2
+
.

(E.21)

The tightness of {Ln(·, u)} follows from the assumption of the
corollary, and these results imply Ln(·, u)

u.d.
→ L(·, u) for each u.

Now we derive the representation of L given in the theorem.
Below, we fix p ∈ Sd−1 and θ ∈ ∂ΘI . As θ ∈ ∂ΘI , the components
of M(θ, λ) for j ∈ Jc(θ) are irrelevant. To obtain a closed form for
L, consider the following optimization problem

C(θ, p, u) := sup
λ

∥W 1/2
J(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ)∥2

+
(E.22)

s.t.⟨p, λ⟩ ≤ u.

Similar to the proof of Corollary E.1, the solution λ∗ of the
problem above satisfies the following KKT conditions with for
some Lagrange multiplier ν > 0 with probability 1:

νp = 2ΠJ(θ)(θ)′WJ(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗)
(E.23)

⟨p, λ∗
⟩ = u. (E.24)

We can solve (E.23) to obtain

νR(p, θ) = 2W 1/2
J(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗). (E.25)

Taking squared norms both sides, we obtain

ν2
∥R(p, θ)∥2

= 4∥W 1/2
J(θ)(θ)(GJ(θ)(θ)

+ ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗)∥24C(θ, p, u). (E.26)

Plugging in ν = 2C(θ, p, u)1/2/∥R(p, θ)∥ back to (E.23),we obtain

p = ∥R(p, θ)∥C(θ, p, u)−1/2ΠJ(θ)(θ)′WJ(θ)(θ)(GJ(θ)(θ)

+ ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗). (E.27)

Now, substitute this into (E.24),

u = ∥R(p, θ)∥C(θ, p, u)−1/2

×


ΠJ(θ)(θ)′WJ(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗), λ∗


= ∥R(p, θ)∥C(θ, p, u)−1/2

×


W 1/2

J(θ)(θ)(GJ(θ)(θ) + ΠJ(θ)(θ)λ∗) ◦ s(θ, λ∗),

×W 1/2
J(θ)(θ)ΠJ(θ)(θ)λ∗


= ∥R(p, θ)∥C(θ, p, u)−1/2

ν
2

R(p, θ),W 1/2
J(θ)(θ)ΠJ(θ)(θ)λ∗


=


R(p, θ),W 1/2

J(θ)(θ)ΠJ(θ)(θ)λ∗


, (E.28)
where the second equality follows from (E.25). Using (E.25) and
the result above, the right hand side of (E.26) can be alternatively
written as

2ν


R(p, θ),W 1/2
J(θ)(θ)GJ(θ)(θ)


+


R(p, θ),W 1/2

J(θ)(θ)ΠJ(θ)(θ)λ∗


= 2ν


R(p, θ),W 1/2

J(θ)(θ)GJ(θ)(θ)

+ u


. (E.29)

Therefore, from (E.26), we obtain

ν = 2∥R(p, θ)∥−1


R(p, θ),W 1/2
J(θ)(θ)GJ(θ)(θ)


+ u


= 2∥R(p, θ)∥−1


R(p, θ),W 1/2

J(θ)(θ)GJ(θ)(θ)

+ u


+

, (E.30)

where the second equality follows from the fact ν > 0. As
C(θ, p, u) = ∥R(p, θ)∥ν2/4, we have

C(θ, p, u) = ∥R(p, θ)∥−1


R(p, θ),W 1/2
J(θ)(θ)GJ(θ)(θ)


+ u

2
+

.

(E.31)

Take the supremum over H(p, ΘI). The result then follows. �

Proof of Corollary 4.1. We first analyze the Wald statistic
supp∈Sd−1{−Zn(p, t) + t1/2}2

+
. By Corollary E.1 and the continuous

mapping theorem, we may write its weak limit as

sup
p∈Sd−1

{−Z(p, t) + t1/2}2
+

= sup
p∈Sd−1


inf

θ∈H(p,ΘI )


(ΠJ(θ)(θ)ΠJ(θ)(θ)′)−1ΠJ(θ)(θ)p, GJ(θ)(θ)

2
+

= sup
p∈Sd−1


ΠJ(θI (p))(θI(p))ΠJ(θI (p))(θI(p))

′

−1

× ΠJ(θI (p))(θI(p))p, GJ(θI (p))(θI(p))
2
+

= Z, (E.32)

where we used H(p, ΘI) = {θI(p)} to obtain the second equality.
For the QLR statistic,

sup
θ∈ΘI

nQn(θ)
d

→ sup
p∈Sd−1

L(p, 0) (E.33)

by LemmaE.3 and the continuousmapping theorem. By LemmaE.3,
this limit can be represented as

sup
p∈Sd−1

sup
θ∈H(p,ΘI )


R(p, θ),W 1/2

J(θ)(θ)GJ(θ)(θ)

2

+

= sup
p∈Sd−1


ΠJ(θI (p))(θI(p))ΠJ(θI (p))(θI(p))

′

−1

× ΠJ(θI (p))(θI(p))p, GJ(θI (p))(θI(p))
2
+

= Z. (E.34)

This establishes the first claim.

For the second part, note that τ ∗

1−α is the 1 − α quantile of Z.
Therefore, it suffices to show that t∗1−α is also the 1− α quantile of
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Z under our hypotheses. For this, we can write

t∗1−α = inf

t : P


sup

p∈Sd−1
{−Z(p, t)}+ ≤ 0


≥ 1 − α


= inf


t : P


sup

p∈Sd−1
{−t1/2 − Z∗(p)}+ ≤ 0


≥ 1 − α


= inf


t : P


sup

p∈Sd−1
{−Z∗(p)}+ ≤ t1/2


≥ 1 − α


= inf


t : P(Z ≤ t) ≥ 1 − α


, (E.35)

where the third equality follows from the fact that for any x ≥ 0
and a continuous function f , supp∈Sd−1{−x + f (p)}+ ≤ 0 ⇔

supp{f (p)}+ ≤ x, and the last equality follows from (E.32).
Therefore, the second claim follows. �

Appendix F. Monte Carlo experiments

The Wald confidence set CWald is defined by

CWald := {θ ∈ Θ : d(θ, Θ̂n(t)) ≤ ĉ→

n,b,1−α(t)/a1/γn },

where t = ln(ln n)
1
2 . To construct this confidence set, we must

compute the support function of the set estimator Θ̂n(t) and
the critical value ĉ→

n,b,1−α(t). For this, we first solve the following
problem for a grid of points ph ∈ Sd−1, h = 1, . . . ,H:

max
θ

⟨ph, θ⟩

s.t.
√
n

2K
k=1

σ̂−1
k,n


a′

kθ − Fk(Ên[m(Xi)]

+

≤ t. (F.1)

We set H to 100. The problem above is a linear programming
problem that can be solved by common softwares. We use Matlab
and a high-speed solver generated by a free software CVXGEN.12

The optimized values then give s(ph, Θ̂n(t)), h = 1, . . . ,H . We
then generate subsamples of size b using Algorithm 3.1 and also
compute s(ph, Θ̂n,b,k(t)), h = 1, . . . ,H similarly. The subsampling
critical value ĉ→

n,b,1−α(t) is then obtained as the 1 − α-quantile of
maxh=1,...H

√
b{s(ph, Θ̂n,b,k(t)) − s(ph, Θ̂n(t))}+. The critical value

for CIter is computed similarly while updating the initial level
using Algorithm 3.2. The coverage is checked by comparing the
support function of the identified set to that of the confidence
set. Specifically, we interpret ΘI being covered by CWald when
s(ph, ΘI) ≤ s(ph, Θ̂n(t)) + ĉ→

n,b,1−α(t)/
√
n for all h. The Hausdorff

loss is then calculated as dH(CWald, ΘI) = maxh=1,...,H |s(ph, ΘI) −

s(ph, Θ̂n(t)) + ĉ→

n,b,1−α(t)/
√
n|.

CHT’s confidence set CCHT-Sub with a subsampling critical value
is defined as

CCHT-Sub =


θ ∈ Θ :

√
n

2K
k=1

σ̂−1
k,n


a′

kθ − Fk(Ên[m(Xi)])

+

≤ τ̂n,b,1−α


, (F.2)

where τ̂n,b,1−α is calculated as follows.13 First, we obtain the
boundary of the initial estimator Θ̂n(t) using (F.1). We then

12 CVXGEN generates compiled (mex) solvers for linear and quadratic programs
and is available for academic purposes. See details at http://cvxgen.com/docs/
index.html.
13 This procedure follows the one in Bugni (2010), which is called Subsampling 2.
introduce a grid of points (10, 000 points) inside Θ̂n(t). For each
subsample of size b, we then compute:

Γn,b =


sup

θ∈Θ̂n(t)

√
b

2K
k=1

σ̂−1
k,b

×

a′

kθ − Fk(Êb[m(Xi)])

+
, if Θ̂n(t) ≠ ∅,

0, if Θ̂n(t) = ∅.

The subsampling critical value τ̂n,b,1−α is then computed as the
1 − α quantile of Γn,b. CHT’s confidence set CCHT-Boot with a
bootstrap critical value is defined as in (F.2) but replacing τ̂n,b,1−α

with a bootstrap critical value τ̂ ∗

n,1−α computed as follows. First,
generate a bootstrap sample {X∗

i , i = 1, . . . , n} from the empirical
distribution. Compute the bootstrap sample moments Ên[m(X∗

i )]

and the weights σ̂ ∗
n . Given Θ̂n, compute

Γ ∗

n =



sup
θ∈Θ̂n(t)

√
n

2K
k=1

(σ̂ ∗

k,n)
−1

×

{a′

kθ − Fk(Ên[m(X∗

i )])}

−{a′

kθ − Fk(Ên[m(Xi)])}

+

×1{|a′

kθ − Fk(Ên[m(Xi)])| ≤ κn/
√
n} if Θ̂n(t) ≠ ∅,

0, if Θ̂n(t) = ∅,

where κn is one of the following values: ln(ln(n))
1
2 , ln(n)

1
2 , and

n1/8. Γ ∗
n therefore differs from Γn,b in the following respects. First,

it uses the bootstrapped samples instead of subsamples. Second, it
re-centers the bootstrapped sample moment a′

kθ − Fk(Ên[m(X∗

i )])

in the criterion function by a′

kθ − Fk(Ên[m(Xi)]). Third, the term
1{|a′

kθ − Fk(Ên[m(Xi)])| ≤ κn/
√
n} selects the moments that

are close to be binding but drops others (see detailed discussions
in Bugni, 2010). τ̂ ∗

n,1−α is then computed as the 1−α quantile ofΓ ∗
n .

For bothCCHT-Sub andCCHT-Boot, we compute their support functions
again using (F.2) replacing t with τ̂n,b,1−α and τ̂ ∗

n,1−α respectively.
The coverage and the Hausdorff loss are then computed by the
same procedure used for the Wald confidence sets.
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