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A GEOMETRIC APPROACH TO NONLINEAR
ECONOMETRIC MODELS

BY ISAIAH ANDREWS AND ANNA MIKUSHEVA1

Conventional tests for composite hypotheses in minimum distance models can be
unreliable when the relationship between the structural and reduced-form parameters
is highly nonlinear. Such nonlinearity may arise for a variety of reasons, including weak
identification. In this note, we begin by studying the problem of testing a “curved null”
in a finite-sample Gaussian model. Using the curvature of the model, we develop new
finite-sample bounds on the distribution of minimum-distance statistics. These bounds
allow us to construct tests for composite hypotheses which are uniformly asymptotically
valid over a large class of data generating processes and structural models.

KEYWORDS: Weak identification, statistical differential geometry, curved exponen-
tial family.

1. INTRODUCTION

ECONOMISTS FREQUENTLY FIT NONLINEAR MODELS using minimum-distance
techniques, which attempt to match model predictions to reduced-form pa-
rameter estimates. Conventional tests for composite hypotheses in this setting
implicitly rely on linear approximations, such as the delta-method and first-
order Taylor expansions, and can be unreliable in contexts where nonlinear-
ity is important relative to the variability of the reduced-form parameter es-
timates. Such nonlinearity may arise for a variety of reasons, for example if
the model being fitted, or the restriction under test, is highly nonlinear relative
to the sample size. Relatedly, nonlinearity may result from weak identification
of structural parameters. In this paper, we develop techniques for inference
which are robust to nonlinearity in the relationship between the structural and
reduced-form parameters.

We first study the problem of testing a nonlinear hypothesis on the mean of
a Gaussian vector with unknown mean and known variance. We show that the
distribution of minimum-distance statistics in this context is dominated by an
easy-to-simulate distribution which depends on only the geometric curvature
of a manifold defined by the null hypothesis, measured relative to the known
variance matrix. Using this bound, we derive a novel test that controls finite-
sample size. This test is always more powerful than tests based on the projec-
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tion method, a leading alternative for this problem. Our approach differs from
the statistical geometry literature initiated by Efron (1975) in that we produce
finite-sample bounds on the distribution of the test statistic, whereas the statis-
tical geometry literature is primarily concerned with higher-order asymptotic
approximations.

We show that our finite-sample bounds allow us to derive uniformly asymp-
totically valid minimum-distance tests. These tests control size uniformly over
a large class of data-generating processes and structural models, allowing ar-
bitrarily nonlinear relationships between the reduced-form and structural pa-
rameters. Moreover, in cases where conventional linear asymptotic approxima-
tions are reliable, our robust tests coincide with conventional tests asymptoti-
cally and thus do not sacrifice asymptotic power in these cases. We also intro-
duce two modifications of our baseline procedure which offer computational
and power advantages in many contexts. Implementing our tests requires only
solving a nonstochastic optimization problem to compute geometric curvature
and so does not entail repeated simulation of the minimum-distance statistic.

The paper is structured as follows. In Section 2, we introduce a finite-sample
testing problem, derive geometric and statistical bounds, and introduce our
baseline test. In Section 3, we extend our finite-sample results to show uniform
asymptotic validity, discuss the behavior of our test under conventional asymp-
totics, and compare our approach to existing alternatives. Section 4 introduces
two modifications of our baseline procedure and discusses implementation. All
proofs may be found in the Supplemental Material (Andrews and Mikusheva
(2016)), available on Anna Mikusheva’s website.2 In the Supplemental Mate-
rial, we further show analytically that weak identification leads to asymptotic
nonlinearity in a toy DSGE example.

We use the following notation: γ̇ is the derivative of the function γ, γ̈ is the
second derivative, BR(x0)= {x ∈ R

k : ‖x−x0‖ ≤ (1+√
2)R} is a k-dimensional

ball of radius (1 + √
2)R with center x0, and |A| is the cardinality of a set A.

2. FINITE-SAMPLE INFERENCE IN A GAUSSIAN MODEL

We consider the problem of testing a potentially nonlinear hypothesis on the
mean of a multivariate Gaussian vector. Assume we observe a k-dimensional
Gaussian vector θ̂ with known covariance matrix Σ and unknown mean θ0.
We wish to test a p-dimensional restriction which may be formulated either as
g(θ0) = 0 for some (k − p)-dimensional smooth function g or as θ0 = θ(β0)
for a known link function θ(·) and some unknown p-dimensional parameter
β0 lying in a parameter space U ⊆R

p.
Such testing problems arise in many contexts, for example in testing hy-

potheses with nuisance parameters or in testing model specification. This

2economics.mit.edu/faculty/amikushe.
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is the limiting testing problem in many weakly identified minimum-distance
models, as well as cases when one fits a highly nonlinear structural model
based on reduced-form parameter estimates. For example, let θ̂ be a prelim-
inary or reduced-form estimator, which is approximately normal with a well-
estimable covariance matrix Σ. Assume the relationship between the structural
and reduced-form parameters is described by the link function θ(β) for struc-
tural parameter β. Then testing correct model specification is (asymptotically)
equivalent to testing that θ0 = θ(β0) for some β0 ∈ U . Alternatively, if there
are two structural parameters λ and β with link function θ(λ�β), then testing a
hypothesis about λ alone,H0 : λ= λ0, is equivalent to testingH0 : θ0 = θ(λ0�β)
for some β ∈U . We base inference on the minimum-distance (or for the exact
Gaussian case, likelihood ratio) statistic, which may be formulated as

MD = min
θ:g(θ)=0

(θ̂− θ)′Σ−1(θ̂− θ0) or

MD = min
β∈U

(
θ̂− θ(β))′

Σ−1
(
θ̂− θ(β))

depending on the formulation of the null hypothesis.
To proceed, let us introduce the normalized random vector ξ = Σ−1/2(θ̂ −

θ0)∼N(0� Ik) and the p-dimensional manifold S = {x : x= Σ−1/2(θ(β)− θ0)�
β ∈ R

p} or S = {x : x = Σ−1/2(θ − θ0)�g(θ) = 0}. Note that the manifold S is
known up to a location shift determined by the true value θ0. Thus, we know
the shape of S and, moreover, know that it passes through the origin if the null
holds. The minimum-distance statistics defined above are simply the squared
distance between ξ and S:

MD = min
x∈S
(ξ− x)′(ξ− x)= ρ2(ξ�S)�(1)

where ρ is the Euclidean distance from a point to a set. The distribution of
ρ2(ξ�S) is, in general, nonstandard and depends on the unknown θ0.

The central issue of this paper is how to find computationally tractable crit-
ical values such that tests based on ρ2(ξ�S) control size. The problem is that
we do not know the location of the true value θ0 on the null manifold, but
the distribution of the statistic depends on this value. Thus, we face a nuisance
parameter problem.

We will distinguish between the linear and nonlinear cases. If S is a p-
dimensional linear subspace in R

k, then the squared distance ρ2(ξ�S) has a
χ2
k−p distribution. Most of the classical statistics literature deals with testing

hypotheses that are either linear or asymptotically linear, in the sense that S
is either a linear subspace or is well-approximated by one in large samples. In
particular, classical delta-method arguments assume that the reduced-form pa-
rameter is precisely estimated relative to the nonlinearity of the null hypothesis
manifold, and thus that we can linearize the null hypothesis manifold around
the true parameter value.
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By contrast, we also want to allow cases where the nonlinearity of the model
is important relative to the sampling error of the reduced-form parameter es-
timates, rendering linear approximations unreliable. As noted by Hansen and
Sargent (1991) in a discussion of rational expectations models, “even for mod-
els that are linear in the variables the cross-equation restrictions on the pa-
rameters can be complicated and often highly nonlinear.” Another potential
source of nonlinearity in S is weak identification: in the Supplemental Mate-
rial, we study an analytic DSGE example in which weak identification, arising
from insufficiently rich time-series dynamics for structural shocks, means that
hypotheses about structural parameters yield highly nonlinear null hypothesis
manifolds.

One bound can be placed on ρ2(ξ�S) without any assumptions, namely that
ρ2(ξ�S) is dominated by a χ2

k distribution. Indeed, since 0 ∈ S,

ρ(ξ�S)2 = min
x∈S
(ξ− x)′(ξ− x)≤ (ξ− 0)′(ξ− 0)∼ χ2

k�(2)

Using this bound gives the “projection method,” which is currently the main
approach available for testing with weakly identified nuisance parameters; see
Dufour and Jasiak (2001) and Dufour and Taamouti (2005). This paper pro-
poses new critical values based on a stochastic bound on the distribution of the
MD statistic. These critical values are smaller than those used by the projec-
tion method and coincide with χ2

k−p critical values for linear hypotheses. This
bound is based on measuring the curvature of the null hypothesis relative to
the variance Σ of the reduced-form parameter estimates.

2.1. Geometric Concepts

In this paper, we focus on regular manifolds embedded in k-dimensional
Euclidean space. A subset S ⊂ R

k is called a p-dimensional regular manifold
if, for each point q ∈ S, there exists a neighborhood V in R

k and a twice-
continuously-differentiable map x : Ũ → V ∩ S from an open set Ũ ⊂ R

p onto
V ∩ S ⊂ R

k such that (i) x is a homeomorphism, which is to say it has a contin-
uous inverse and (ii) the Jacobian dxq has full rank. A mapping x that satisfies
these conditions is called a parameterization or a system of local coordinates.

For x a system of local coordinates at q, the set of all tangent vectors to S
at q coincides with the linear space spanned by the Jacobian dxq and is called
the tangent space to S at q (denoted Tq(S)). Denote by γ : (−ε�ε)→ S a curve
which lies in S and passes through q = γ(0). The measure of curvature we
consider is

κq(S)= sup
X∈Tq(S)�γ̇(0)=X

κq(γ�S)= sup
X∈Tq(S)�γ̇(0)=X

∥∥(
γ̈(0)

)⊥∥∥∥∥γ̇(0)∥∥2 �(3)

where (W )⊥ stands for the projection ofW onto the space orthogonal to Tq(S).
This measure of curvature is equal to the maximal curvature over all geodesics
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passing through the point q and is invariant to the parameterization. If S is a
p-dimensional sphere of radius C, then, for each q ∈ S, we have κq(S)= 1/C .
If, on the other hand, S is a linear subspace, its curvature is zero at all points.
Further discussion of geometric concepts is deferred to the Supplemental Ma-
terial.

How to calculate curvature in practice. Let S be a p-dimensional manifold
in R

k, and x a local parameterization at a point q, q= x(y∗). Denote the deriva-
tives of x at q by vi = ∂x

∂yi
(y∗), and let Z = (v1� � � � � vp). For any vector W ∈ R

k

let W ⊥ =NZW = (I − Z(Z′Z)−1Z′)W . Finally, denote the p2 vectors of sec-
ond derivatives Vij = ∂2

∂yi ∂yj
x(y∗). The curvature can then be written as

κq(S)= sup
u=(u1�����up)∈Rp
‖∑p

i=1 uivi‖=1

∥∥∥∥∥
p∑

i�j=1

uiujV
⊥
ij

∥∥∥∥∥ = sup
(w1�����wp)∈Rp

∥∥∥∥∥
p∑

i�j=1

wiwjV
⊥
ij

∥∥∥∥∥∥∥∥∥∥
p∑
i=1

wivi

∥∥∥∥∥
2 �(4)

2.2. Geometric Bounds

We bound the distance in R
k from a random vector ξ ∼ N(0� Ik) to a p-

dimensional nonrandom manifold S that contains zero. Our bound depends
on the maximal curvature κq(S) over all relevant points in the manifold S. The
bound depends on global properties of the manifold, in the sense of properties
that hold on a fixed bounded set, but the behavior of the manifold at infinity
is irrelevant. In what follows, we restrict attention to a connected part of the
manifold that lies inside of a finite cylinder centered at zero.

We derive our bound in two steps: first, we construct an envelope for the
manifold S using a collection of p-dimensional spheres. We show that the dis-
tance from any point ξ to S is bounded above by the distance from ξ to the most
distant sphere in the collection we consider. Second, we show that our geomet-
ric construction implies a bound on the distribution of ρ2(ξ�S) and hence on
the distribution of the minimum-distance statistic. To provide intuition for our
main statement, we first discuss two simple cases in which the construction of
the envelope can be easily visualized.

Case 1 (k= 2, p= 1): A curve in R
2. Consider a curve S passing through zero

(i.e., (0�0) ∈ S). Suppose that the curvature of S is less than or equal to 1/C
for all points in S. If we imagine two circles of radius C tangent to S at zero, we
can see that S lies between them—see the left panel of Figure 1 for illustration.
The distance from any point ξ to S (denoted by d1 in the left panel of Figure 1)
does not exceed the distance from ξ to the further of the two circles (denoted
by d2). This is the geometrical bound we use.

Note that if the maximal curvature of S goes to zero at all points (so that
C → ∞), then the two bounding circles converge to the tangent line to S at



1254 I. ANDREWS AND A. MIKUSHEVA

FIGURE 1.—Left panel: Bounding a line between two curves in Case 1. Middle panel: The
envelope for a space curve in R

3 in Case 2. Right panel: The stochastic bound described in The-
orem 1(d).

zero on any bounded set. Further, note that the distribution of the distance d2

from a normal random vector to the further of two circles depends only on C
and is easy to simulate.

The logic of this example is quite straightforward to generalize to the case
of a k− 1-dimensional manifold in R

k, known as a hyper-surface. Dealing with
manifolds of lower dimension is more challenging, but the basic principle of
the approach can be illustrated using a curve in R

3.
Case 2 (k = 3, p = 1): A curve in R

3. Suppose now that we have a one-
dimensional space curve S in R

3 that passes through zero and whose curvature
at all points is bounded above by 1/C . We construct our envelope by consid-
ering the collection of all one-dimensional circles of radius C tangent to S at
zero. Equivalently, one can take a given circle tangent to S at zero and rotate
it around the tangent line. An example of the resulting surface is given in the
middle panel of Figure 1: we can again see that the curve S lies inside the
envelope.

One can show that the distance from any point ξ to the curve S (denoted by
d1 in the middle panel of Figure 1) is bounded above by the distance from ξ to
the furthest circle in the collection used to construct the envelope (denoted d2).
Note that if the curvature of S goes to zero at all points (so that C → ∞), then,
on any bounded set, the envelope converges to the tangent line to S at zero.

This geometric bound immediately implies a bound on the distribution of
ρ2(ξ�S). For ξ ∼ N(0� I3), the distribution of the distance d2 from ξ to the
furthest circle is simple to simulate. One can show that it is distributed as the
squared distance from a two-dimensional random vector η to the circle of ra-
dius C with center (0�−C) where the coordinates of η are distributed as inde-
pendent

√
χ2

1 and
√
χ2

2 random variables.
General case. With the intuition provided by these examples, we now turn

to the general case. Let S be a regular connected p-dimensional manifold in
R
k passing through zero. By the rotation invariance of standard normal vec-

tors, we can assume without loss of generality that the tangent space T0(S) to
manifold S at zero is spanned by the first p basis vectors. For each x ∈ R

k,
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let x = (x(1)� x(2)), where x(1) = (x1� � � � � xp) ∈ R
p contains the first p coordi-

nates of x while x(2) = (xp+1� � � � � xk) ∈ R
k−p contains the last k− p. In what

follows, we restrict attention to points on the manifold that lie inside of a
(large) finite cylinder DC = {x = (x(1)� x(2)) : ‖x(1)‖ ≤ C�‖x(2)‖ ≤ C�x(1) ∈ R

p�
x(2) ∈ R

k−p} ⊂ R
k. Let SC be the intersection S ∩DC if it is connected or the

connected part of S∩DC that passes through zero (i.e., the part of S∩DC which
can be reached by continuous paths lying in S ∩DC which pass through zero)
otherwise. Note that ρ(ξ�S)≤ ρ(ξ�SC).

To obtain some of our bounding results, we need one further assumption:

ASSUMPTION 1: For any y(1) ∈ R
p with ‖y(1)‖ ≤ C, there exists a point x ∈ SC

such that x(1) = y(1).

Since we assumed (without loss of generality) that the tangent space T0(S) is
spanned by the first p basis vectors, Assumption 1 requires that the projection
of SC on its tangent space at zero cover a p-dimensional ball of radius C cen-
tered at zero, and hence that SC have dimension p in a global sense. By a local
property we mean one that holds on an infinitesimal neighborhood of a point.
In contrast, by a global property we mean one that holds on a fixed bounded
set. Lemma 1 shows that Assumption 1 holds quite generally for implicitly de-
fined manifolds.

LEMMA 1: Let the p-dimensional manifold S in R
k be defined by S = {x ∈R

k�
g(x)= 0} for a continuously differentiable function g : Rk → R

k−p. Assume that
g(0k)= 0. For some C > 0, assume that ∂

∂x′g(x) is full rank for all x ∈ SC . If the
maximal curvature over SC is not larger than 1/C , then the projection of SC on the
tangent space T0(SC) covers the ball of radius C centered at zero.

THEOREM 1: Let S be a regular p-dimensional manifold in R
k passing through

zero. Assume that the tangent space T0(S) is spanned by the first p basis vec-
tors. Assume that for some constant C > 0, we have that κq(S)≤ 1

C
for all points

q ∈ SC . Then:
(a) Manifold SC lies inside the set M∩DC , where

M= {∥∥x(1)∥∥2 + (
C − ∥∥x(2)∥∥)2 ≥ C2

}
�(5)

(b) If Assumption 1 is satisfied, then, for any point ξ ∈ R
k, we have almost

surely

ρ(ξ�S)≤ max
u∈Rp−k�‖u‖=1

ρ(ξ�Nu)�

where Nu = {x ∈R
k : x= (x(1)� zu)�x(1) ∈ R

p� z ∈ R+�‖x(1)‖2 + (C − z)2 = C2}.
(c) Almost surely maxu∈Rp−k�‖u‖=1 ρ(ξ�Nu)= ρ(ξ�Nũ), where ũ= − 1

‖ξ(2)‖ξ
(2).
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(d) If ξ∼N(0� Ik), we have for all x� y:

P
{

max
u∈Rp−k�‖u‖=1

ρ2(ξ�Nu)≤ x�‖ξ‖ ≤ y
}

= P{
ρ2

2

(
η�NC

2

) ≤ x�‖η‖ ≤ y}�
where the coordinates of the two-dimensional random vector η = (

√
χ2
p�√

χ2
k−p) ∈R

2 are independently distributed,NC
2 = {(z1� z2) ∈ R

2 : z2
1 +(C+z2)

2 =
C2} is a circle of radius C with the center at (0�−C), and ρ2 is Euclidean distance
in R

2.

Theorem 1(a) establishes that the manifold SC lies inside the set M bounded
by an envelope we construct from a collection of p-dimensional spheres Nu.
Statement (b) asserts that the distance from a point ξ to the manifold S is
bounded by the distance from ξ to the furthest sphere in this collection, while
(c) picks out exactly which sphere Nũ(ξ) is the furthest away for a given ξ. Fi-
nally, (d) shows that the distribution of the distance from ξ∼N(0� Ik) to Nũ(ξ)

is the same as the distribution of the distance from a random variable η to a
particular circle in R

2 as depicted in the right panel of Figure 1.

2.3. Stochastic Bound

Theorem 1 implies a bound on the distribution of the distance from ξ ∼
N(0� Ik) to a p-dimensional manifold S. Assume that for some C > 0, S sat-
isfies all the assumptions of Theorem 1 including Assumption 1. Then almost
surely,

ρ2(ξ�S)≤ ρ2(ξ�Nũ)�(6)

as follows from statements (b) and (c) of Theorem 1. By Theorem 1(d), the
distribution of the right-hand side of (6) is the same as the distribution of the
random variable ψC ,

ψC = ρ2
2

(
η�NC

2

)
�(7)

where the coordinates of the two-dimensional random vector η = (
√
χ2
p�√

χ2
k−p) ∈ R

2 are independently distributed, NC
2 = {(z1� z2) ∈ R

2 : z2
1 +

(C + z2)
2 = C2} is a circle of radius C with the center at (0�−C), and ρ2 is

Euclidean distance in R
2. Combining these results, we establish the bound

P
{
ρ2(ξ�S)≥ x} ≤ P{ψC ≥ x} for all x > 0�

so the distribution of ψC is an upper bound on the distribution of ρ2(ξ�S).
Note that the distribution of ψC depends only on the dimension of the

space k, the dimension p of the manifold, and the maximal curvature 1
C

. The
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distribution of ψC is stochastically increasing in the maximal curvature and
hence stochastically decreasing in C, so if C1 <C2, thenψC1 first-order stochas-
tically dominates ψC2 . As C → ∞, ψC ⇒ χ2

k−p, so if the curvature converges to
zero at all relevant points, then our bounding distribution converges to the dis-
tribution of the distance from ξ∼N(0� Ik) to a p-dimensional linear subspace.
At the other extreme, ψC ⇒ χ2

k as C → 0, so if the curvature of the manifold
becomes arbitrarily large, our bound coincides with the naive bound (2) that
can be imposed without any assumptions on the manifold.

We want to emphasize that what we suggest is a stochastic bound that holds
under quite general assumptions. If the model of interest has additional struc-
ture, this can potentially be exploited to obtain tighter bounds.

2.4. Construction of a Feasible Test

If the manifold S satisfies the assumptions of Theorem 1, then the MD
statistic is stochastically dominated by ψC under the null. Thus if we use
F1−α(C�k�p), the (1 −α)-quantile of ψC (which is easy to simulate), as a criti-
cal value, the resulting test has size at most α.

A practical question is what value of C to use. According to Theorem 1,
C is tied to the maximal curvature of S over the intersection of S with a cylin-
der DC centered at zero. In practice, however, we do not observe the mani-
fold S, which depends on the unknown θ0. Nonetheless, we can see that the
desired curvature is the same as the maximal curvature of the observed man-
ifold S∗ = {Σ−1/2θ(β)�β ∈ U ⊂ R

p} ⊂ R
k over all points in the intersection of

S∗ with the cylinder D∗
C(x0)= {x ∈ R

k : x− x0 ∈DC} centered at x0 = Σ−1/2θ0.
This maximal curvature, in turn, is clearly bounded above by the maximal cur-
vature over the whole manifold, so if we take C∗ = 1/(maxq∗∈S∗ κq∗(S∗)), using
critical values based on ψC∗ provides a test that controls size. Moreover, since
C∗ does not depend on any unobservables, a test based on these critical values
is feasible.

3. ASYMPTOTIC PROPERTIES

The procedure described above controls finite-sample size when the
reduced-form parameter estimates are normally distributed with known co-
variance. In practice, however, reduced-form parameter estimates θ̂ are only
approximately normally distributed, and researchers must estimate the covari-
ance matrix Σ. This section obtains uniform asymptotic results, discusses the
performance of our approach under conventional asymptotics, and compares
our approach to others available in the literature.

3.1. Uniformity

We define a model to be a set consisting of a true value of the k-dimensional
reduced-form parameter θ0, a data-generating process Fn consistent with θ0,
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and a link function connecting the structural and reduced-form parameters,
or more generally a manifold S̃n describing the null hypothesis H0 : θ0 ∈ S̃n.
We assume that the null holds. We allow the data-generating process Fn and
the structural model S̃n to change with the sample size n; this accommodates
sequences of link functions such as those which arise under drifting asymptotic
embeddings, for example the weak identification embeddings of D. Andrews
and Cheng (2012) and Stock and Wright (2000). It also allows us to model the
case when the researcher tries to fit a more complicated or nonlinear model
when she has a larger sample. Suppose we have an estimator, θ̂n, which will
be asymptotically normal with asymptotic covariance matrix Σ= Σ(Fn). Let Σ̂n
be an estimator for Σ. We consider the set of possible models M = {M :M =
(θ0� {Fn}∞

n=1� {S̃n}∞
n=1)} and impose the following assumption.

ASSUMPTION 2:
(i)

√
nΣ−1/2(θ̂n − θ0)⇒N(0� Ik) uniformly over M;

(ii) Σ̂n −Σ→p 0 uniformly over M;
(iii) the maximal and minimal eigenvalues of Σ are bounded above and away

from zero uniformly over M;
(iv) for each n and manifold Sn = {x= √

nΣ−1/2(y−θ0)� y ∈ S̃n}, the manifold
Sn satisfies Assumption 1 for C = Cn = 1/ supq∈Sn κq(Sn).

Assumption 2(i) and (ii) require that the reduced-form parameter estimates
are uniformly asymptotically normal with a uniformly consistently estimable
covariance matrix. This assumption holds quite generally for many standard
reduced-form estimators, such as OLS estimates and sample covariances, over
large classes of models. Care is needed when using parameter estimates from
ARMA models, however, as these models can suffer from near-root cancel-
lation, leading to nonstandard large-sample behavior (see D. Andrews and
Cheng (2012)). Assumption 2(iii) uniformly bounds the eigenvalues of the
asymptotic covariance matrix above and below, and will generally follow from
a uniform bound on the moments of the data-generating process. Finally, As-
sumption 2(iv) imposes Assumption 1. For implicitly defined manifolds, this
will again follow from Lemma 1.

Description of the procedure. Let us introduce a manifold Ŝn = {√nΣ̂−1/2
n (x−

θ0) : x ∈ S̃n}, which differs from Sn in using an estimator Σ̂n in place of Σ.
Let3 Ĉn = 1/(supq∈Ŝn κq(Ŝn)). Our main test uses the statistic nminθ∈S̃n (θ̂n −
θ)′Σ̂−1

n (θ̂n − θ) along with critical value F1−α(Ĉn�k�p), where we denote by
F1−α(C�k�p) the (1 −α)-quantile of the random variable ψC discussed in Sec-
tion 2.3.

3Note that Ŝn depends on θ0 but that Ĉn can also be written as Ĉn = 1/(supq∈Ŝ∗
n
κq(Ŝ

∗
n)) for

Ŝ∗
n = {√nΣ̂−1/2

n (x) : x ∈ S̃n}, and so can be calculated.
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THEOREM 2: If Assumption 2 holds, then the testing procedure described above
has uniform asymptotic size α:

lim sup
n→∞

sup
M∈M

P
{
nmin
θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) > F1−α(Ĉn�k�p)

}
≤ α�

This result establishes the uniform asymptotic validity of our test allowing
for arbitrarily nonlinear (or linear) behavior in the sequence of null hypothesis
manifolds S̃n. The key to this result is that our critical values reflect the curva-
ture of the null hypothesis manifold measured relative to the uncertainty about
the reduced-form parameters for each sample size.

3.2. Curvature Under Conventional Asymptotics

Our method complements conventional asymptotic results, in the sense that
if classical assumptions guaranteeing asymptotic linearity hold, then our ro-
bust critical values converge to the conventional ones. Consider a sample of
size n from a model parameterized by structural parameter β that belongs to
some bounded set U ⊂ R

p and assume that
√
n(θ̂ − θ0)⇒ N(0�Σ). Assume

that the relation between structural and reduced-form parameters θ= θ(β) is
fixed, twice continuously differentiable with respect to β, and that the matrix
∂
∂β
θ(β) is full rank on a neighborhood of β0, which is the only point in the clo-

sure of U that solves θ0 = θ(β). We also assume that β0 belongs to the interior
ofU . The null hypothesis manifold Sn for sample size n is the graph of function
xn(β)= √

nΣ−1/2(θ(β)− θ0)�β ∈U . The maximal curvature over all points of
the manifold Sn is equal to 1/

√
n times the maximal curvature of the mani-

fold S1 obtained for the sample of size 1, assuming the maximal curvature is
finite. Consequently, the critical value F1−α(Cn�k�p) converges to the (1 −α)-
quantile of a χ2

k−p-distribution, which is the true asymptotic distribution.

3.3. Other Methods for Testing With Nuisance Parameters

The main area of application of our method is testing in the presence of
nuisance parameters. There exist several alternatives. One approach widely
used in practice is the projection method, which was popularized in economet-
rics by Dufour and Jasiak (2001) and Dufour and Taamouti (2005). Applied in
our setting, the projection method uses χ2

k critical values and requires no as-
sumptions beyond the asymptotic normality of θ̂. However, projection method
critical values are larger than those used by our method, resulting in less pow-
erful inference in cases where our assumptions hold. Only in the limiting case
of infinitely high curvature (C = 0) do our critical values equal those of the
projection method.

An alternative to projection is to impose assumptions like those stated in
Section 3.2 (typically labeled as strong identification assumptions) and use
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χ2
k−p critical values. The obvious advantage of this approach is that it is strictly

more powerful than the projection method. However, the assumptions of Sec-
tion 3.2 are essential, and the test may over-reject if these assumptions fail. For
example, in the Supplemental Material we show that weak identification may
lead to significant curvature and invalidate χ2

k−p critical values. By contrast, the
test we suggest in this paper does not rely on such assumptions.

In the particular case of linear instrumental variables models with ho-
moscedastic errors and multiple endogenous regressors, Guggenberber,
Kleibergen, Mavroeidis, and Chen (2012) showed that one may use the MD
statistic with χ2

k−p critical values even when the nuisance parameter may be
poorly identified. By contrast, in linear IV our approach uses χ2

k critical values.4

However, the result of Guggenberger et al. (2012) does not hold in more gen-
eral settings. In particular, Lee (2014) provided examples of nonhomoscedastic
IV models in which χ2

k−p critical values lead to over-rejection.
Another alternative, developed by D. Andrews and Cheng (2012), assumes

we know which parameters are weakly identified and that there is a known
parameter that controls the strength of identification. They then created ro-
bust tests by simulating the asymptotic distribution of the test statistic for dif-
ferent values of nuisance parameters and taking the “least favorable” among
those distributions over a set of relevant nuisance parameter values. Unfortu-
nately, this approach can become quite computationally demanding in models
with more than a few nuisance parameters. Moreover, the assumption that a
known parameter controls the strength of identification rules out many mod-
els of economic interest. As one might expect given the additional structure
imposed by D. Andrews and Cheng’s approach, in contexts where both their
results and those developed in this paper can be applied, their approach will
generally yield more powerful tests. Other recent work on testing with nuisance
parameters includes Elliott, Mueller, and Watson (2015), McCloskey (2015),
and Moreira and Moreira (2013).

4. MODIFICATIONS AND IMPLEMENTATION

The baseline procedure described in Section 2.4 uses the maximal curvature
C∗ over the whole manifold and with respect of all parameters. In this section,
we discuss two modifications which may allow us to further reduce the critical
values. For brevity, we present these modifications under the assumption that
θ̂ is exactly normal with known covariance, but the asymptotic properties of
these modifications are established in the Supplemental Material.

4The null hypothesis manifold in linear IV with multiple endogenous regressors is irregular,
having a singularity when the first stage is equal to zero. One can resolve this by applying the
approach described below to project over the endogenous regression coefficients not under test,
resulting in χ2

k critical values.
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4.1. Modification 1: Curvature Over a Smaller Set

There are a variety of problems in which using C∗ may be unappealing. For
example, it may be that searching numerically for the maximal curvature over
the whole manifold is quite time-consuming, or that the manifold has irregu-
larities or points of high curvature which are far away from θ0. In such cases,
we may wish to restrict attention to the curvature of the manifold over some
smaller set, which raises two issues. First, we do not know the true value θ0

and hence the center of the cylinderD∗
C(x0). Second, if the manifold is close to

flat (so C is large), to find the maximal curvature over D∗
C(x0) we might need

to check curvature over a huge set, which could again be very computationally
demanding.

We suggest a modification that overcomes both of these problems and is easy
to implement in practice. For a fixed value R, let C ∧R= min{C�R}. Denote
by F1−α(C�R�k�p) the (1 − α)-quantile of the distribution of ψC(R) defined
as

ψC(R)=
{
ρ2

2

(
η�NC

2

)
� if ‖η‖ ≤R,

‖η‖2� if ‖η‖>R,
(8)

where η and NC
2 are defined in statement (d) of Theorem 1. For any finite R,

the distribution of ψC(R) first order stochastically dominates the distribution
of ψC . In Lemma 2 below, we show that one may calculate curvature only over
that part of the manifold lying inside a ball of radius proportional to R, but that
one must compensate for this by using larger critical values, specifically quan-
tiles of ψC(R) rather than ψC . This is the price paid for calculating curvature
over a smaller set of points.

LEMMA 2: Assume that we have a single observation θ̂ from a population
θ̂∼N(θ0�Σ) with unknown mean θ0. We wish to test the hypothesis H0 : θ0 ∈ S̃.
Let S∗ = {Σ−1/2θ�θ ∈ S̃} ⊂ R

k be a regular p-dimensional manifold, and B∗ =
BR(x̂) a ball of radius (1 + √

2)R around x̂ = Σ−1/2θ̂, where R is such that
P{χ2

k ≥R2}<α. Let

C∗
R =

{(
min

q∗∈S∗∩B∗ 1/κq∗
(
S∗)) ∧R� if S∗ ∩B∗ �= ∅,

0� if S∗ ∩B∗ = ∅.

Suppose that Assumption 1 holds for C ∧R where C = 1/ supq∈S∩DR κq(S). Then
the test that rejects the null if and only if MD > F1−α(C∗

R�R�k�p) has size not
exceeding α.

4.2. Modification 2: Working With a Subset of Parameters

The procedures discussed above treat the multidimensional vector β in such
a way that only the direction of highest curvature affects the value of C and
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thus influences the critical values. Imagine instead that β can be divided into
two subsets of parameters β = (β′

1�β
′
2)

′ in such a way that the curvature cor-
responding to directions β1 is low. Then by calculating curvature only with
respect to β1, while projecting over β2, we may be able to obtain smaller crit-
ical values. Moreover, we can search over different partitions of β and use
the one that gives us the smallest critical value. To state this result formally,
let J be a subset of indices {1� � � � �p}, let βJ denote the corresponding ele-
ments of β, and let β−J denote the remaining elements. Let U−J and UJ(β−J)
denote {β−J : ∃βJ ∈ R

|J| s.t. (βJ�β−J) ∈U} and {βJ ∈ R
|J| : (βJ�β−J) ∈U)}, re-

spectively. Let J be a collection of subsets J.

LEMMA 3: Assume that θ̂ ∼ N(θ0�Σ), and that S∗ = {Σ−1/2θ(β)�β ∈ R
p} ⊆

R
k is a manifold passing through θ0. For J ∈ J and β−J ∈U−J , consider the |J|-

dimensional sub-manifold

S∗(β−J)= {
Σ−1/2θ(βJ�β−J)�βJ ∈UJ(β−J)

}
�

For q ∈ S∗(β−J), let κq(S∗(β−J)) be the curvature of the |J|-dimensional sub-
manifold S∗(β−J). Define

C∗
J = inf

β−J∈U−J
inf

q∈S∗(β−J )

1
κq

(
S∗(β−J)

)
to be the inverse of the maximal curvature with respect to sub-parameter βJ only,
where the maximum is taken over all |J|-dimensional sub-manifolds S(β−J). As-
sume that for β−J�0 the true value of β−J , S(β−J�0)= {x−Σ−1/2θ0 : x ∈ S∗(β−J�0)}
satisfies Assumption 1 with C = C∗

J . Then the test that rejects the null if and only
if MD> F1−α(C∗

J �k� |J|) has size at most α. In fact, we can minimize the critical
values over J , and the test that rejects if and only if MD>minJ∈J F1−α(C∗

J �k� |J|)
has size at most α.

Critical values F1−α(C∗
J �k� |J|) may be smaller than those based on the full

parameter vector due to smaller curvature, or larger since |J| ≤ p. Note, how-
ever, that so long as J includes the full set of indices {1� � � � �p}, minimizing
critical values over J can only decrease our critical values relative to the base-
line procedure. Moreover, this modification may be freely combined with that
in the previous section, allowing us to simultaneously restrict attention to a fi-
nite ball around θ̂ and calculate curvature over only a subset of parameters.
See Lemma S2 in the Supplemental Material for a formal statement.

4.3. Implementation

This section summarizes how to use the results above to calculate curvature
and critical values. Our discussion here will assume the manifold has an explicit
global parameterization. These results may be generalized to implicitly defined
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manifolds, as the implicit function theorem guarantees the existence of local
parameterizations at all points.5 The null hypothesis is H0 : θ0 = θ(β)�β ∈U .

In using the first modification (Section 4.1), the appropriate choice of R will
depend on the problem under study. Critical values are strictly decreasing in R,
but are increasing in the maximal curvature. If the manifold S∗ has singularities
or points of very high curvature, then it will be beneficial to choose a smaller
value of R, since this gives us a better chance of excluding these points and ob-
taining small critical values. Likewise, in cases where the curvature optimiza-
tion problem given below is computationally taxing, choosing a smaller R will
reduce the domain over which we have to search. The choice of R is closely
related to the choice of an initial confidence set in a Bonferroni procedure.

For the second modification (Section 4.2), from a theoretical perspective it
is optimal to choose J = 2{1�����p}, since search over the collection of all subsets
gives the smallest possible critical value. In high-dimensional cases, however,
such a search will be unappealing. Happily, in many problems the structure
of the link function θ suggests some subset of parameters which are likely to
contribute to high curvature, allowing us to restrict attention to this subset.
More generally, if researchers have ex ante knowledge about which subsets of
parameters tend to be problematic for conventional approaches to inference,
this can inform the choice of J .

Given choices of R and J , for each J ∈J and i� j ∈ J, define

ZJ(β)= Σ−1/2 ∂

∂βJ
θ(β)� VJ�ij(β)= Σ−1/2 ∂2

∂βi ∂βj
θ(β)�

V ⊥
J�ij(β)= (

I −ZJ(β)
(
ZJ(β)

′ZJ(β)
)−1
ZJ(β)

′)VJ�ij(β)
=NZJ(β)VJ�ij(β)�

We can then calculate the maximal curvature over subset J and ball BR(x̂) =
{x : ‖x−Σ− 1

2 θ̂‖ ≤ (1 + √
2)R} and define

C∗
J�R =

(
inf

β∈U :Σ−1/2θ(β)∈BR(x̂)
inf

(w1�����w|J|)∈R|J|

∥∥ZJ(β)w∥∥2∥∥∥∥∥
|J|∑
i�j=1

wiwjV
⊥
ij (β)

∥∥∥∥∥
)

∧R�

This is a p + |J|-dimensional optimization problem, which may be solved by
standard techniques. We want to emphasize that no simulation is required to
calculateC∗

J�R. For each J, we simulate F1−α(C∗
J�R�R�k� |J|) as the 1−α quantile

of random variable ψC(R) as defined in (8) with C = C∗
J�R. If |J |> 1, then we

use the smallest critical value, minJ∈J F1−α(C∗
J�R�R�k� |J|).

5Note that many implicitly defined manifolds also have an explicit representation. Thus, the
assumption of a global parameterization does not preclude the application of Lemma 1.
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