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Introduction

Between 1980 and 2002, wildfires larger than 300 acres amounted to about 1.4 percent of all
reported wildfires, but accounted for about 94 percent of all suppression expenditures. Large fires are
responsible for the bulk of fire suppression expenditures (Strategic Issues Panel on Fire Suppression
Costs, 2004). Understanding the factors that influence suppression costs and size of large fires is there-
fore important for both strategic fire planning and on-site fire management decisions. This paper
contributes to the existing literature and modeling approaches by developing and estimating a bivari-
ate econometric model of cost per acre and fire size that can provide statistically consistent and
relatively precise predictions of fire suppression costs (per acre and in total) for a given large fire
before final fire acreage is known.
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Several papers have been published that focus on estimating costs and/or acreage of individual
wildland fires. The most recent and relevant include Butry et al. (2008), who estimate log-linear
regression models for fire acreage based on fire characteristics, climate/weather, management and
mitigation efforts, and other factors. They break their sample into two subsamples (fires>1000
acres and fires<1000 acres) and estimate the same regression equation on each sample sepa-
rately to allow flexibility to account for structural differences between large and small fire regimes.
However, they do not statistically account for truncation of their subsamples (limited to 1000
acres or larger), which may introduce bias and inconsistency in parameter estimates and model
predictions.

Gebert et al. (2007) estimate suppression costs per acre for individual wildland fires of 100 acres
or more. The paper focuses specifically on costs per acre, and does not estimate a fire size equation
to address sample truncation based on fire size. Currently, models such as this are being used for
forecasting during the fire, but with reliance on ad hoc estimates of final fire acreage. Holmes et al.
(2008) estimate a set of models for fire size based on an extreme value threshold model based on a
generalized Pareto distribution to allow for relatively heavy tailed distributions. One distinction of this
approach is that it calls for the explicit selection of a fire size threshold for including an observation
in the sample for estimation.

The primary contribution of this present paper is the development and estimation of a model of
suppression costs for individual fires that accounts for sample truncation inherent in our data, and is
useable for forecasting prior to knowing final fire characteristics.

We estimate acreage and cost per acre equations as a bivariate system of equations. This
allows us to better utilize information about the relationship between acreage and costs,
thereby improving forecasting precision while allowing early cost predictions (prior to knowing
acreage). Addressing sample truncation based on acreage addresses potential statistical incon-
sistency and bias in parameter estimates and predictions, for both acreage and cost equations,
that would likely exist if truncation were ignored. We use new data from the Department of
Interior for 2004 through 2009, for a total of 2061 available observations on fires of 300 acres
or more.

Although the modeling framework of Holmes et al. (2008) is a reasonable approach, we rely on
lognormal disturbances for modeling because it provide a more stable and manageable framework
for joint estimation of costs and acreage with a relatively large number of covariates. We contend
that this distributional assumption is a reasonable approximation and worth the benefits in terms of
practical estimation and forecasting. We also found in preliminary analysis that applying the threshold
selection approach used by Holmes et al. (2008) would call for substantial data and information loss
(up to 95% of our observations).

The next section provides the theoretical foundation for the empirical model, followed by data
descriptions, estimation results, cost and fire size prediction summaries, and a conclusion.

Model and estimation

As motivation for the bivariate regression equations for cost per acre and fire acreage, suppose
a fire suppression manager allocates resources to balance suppression costs against wildfire dam-
age losses. Consider two types of suppression inputs: s, is productive for limiting acreage, and s is
productive for limiting damage per acre, with constant marginal costs r, and ry, respectively. Total
suppression costs are T=rqSq +14S4. Fire size A(Sq, Xq, €4), iS @ decreasing function of s4, and is also
affected by exogenous factors X, and a random disturbance &,. Per acre suppression costs are there-
fore C(sq, Sq) = T/A(Sq, Xa, €q). Damage per acre is D(S4, X4, £€4), Which is a decreasing function of s4, and is
also a function of exogenous factors x4 and a random disturbance &,4. Total losses from the fire are then
L(-)=D(Sg, X4, £4)A(Sq, Xa, €¢). The random disturbances are unobservable in the data, assumed uncor-
related with exogenous variables, and treated as i.i.d. random disturbances for ex post observation and
estimation. This theoretical model formulation is designed to illustrate how endogenous suppression
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allocation will induce a close relationship between per acre costs and acreage that supports joint
estimation.!

Assume that the fire manager allocates suppression resources to maximize utility over suppression
costs and wildfire damage. The unconstrained maximization problem can be characterized as

maxs,,s, U{T(Sa, Sa), L(Sa, Sq)}, (1)

where exogenous variables and disturbances are omitted for clarity but will be reintroduced shortly.
The necessary conditions for a maximum are

au aT oD

an = UT Bsd + ULA an =0 (2)
and

au oT 0A

9sa Ur 0sq +UD da 0, ®)

where Ur and U; are the marginal utility of suppression costs and losses, respectively. They are both
assumed to be negative, but the working environment of a fire manager may induce differences in the
marginal valuation of a dollar of suppression and a dollar loss in values at risk. Sufficient second-order
curvature conditions are assumed to hold for a maximum.

Consider Eq. (3) further. Recall that T=AC, so it follows that oT/dsq =A(9C/dsq)+ (0A[sq)C. Eq. (3)
can therefore be written as

aC oA 0A
Ae—+ — D— =0. 4
UT( 8sa+8sac>+UL o 0 (4)
Rearranging and simplifying Eq. (4) provides
aC C UuUD
M——(Z+U7TK)<0. (5)

Thus, we would expect to find a negative relationship between costs per acre and fire size. This is indeed
the case in most wildfire data: based on raw correlations, cost per acre tends to be substantially lower
for larger fires.?

Assuming necessary and sufficient conditions hold for a maximum and the implicit function the-
orem holds, it can be shown that optimal demand for both types of suppression is a function of all
exogenous observed and unobserved factors: s * =[s4(X, €), S4(X, €)]’, where X=rUx; Ux, is the union
of all exogenous variables and € = [aa &4 ] . Substituting the suppression demand function back into
the C and A provides the indirect cost per acre and acreage functions as two outcomes of a fire:

y _ r's(x,€)
O s o), 8 ©)
A*(X, €) = A*(s(X, €), Xq).

We do not have data on suppression effort s*, and so cannot directly estimate suppression demand
functions. However, given that suppression demand is a function of exogenous factors, indirect

1 Twoinputs are necessary to mathematically identify the choice between reducing damage per acre and reducing acreage. The
separability in production between the two inputs is somewhat restrictive, but provides a very clear foundation for illustrating
how endogenous suppression allocation induces a tight relationship between costs per acre and fire size.

2 This often observed negative correlation between fire size and cost per acre have motivated several others in the literature
(including the authors of this paper - see Gebert et al., 2007) to hypothesize that fire size should enter directly into the cost/acre
equation and/or that cost/acre should enter into the acreage equation. However, as our theoretical model demonstrates, optimal
fire suppression investment may give rise to this correlation even when no simultaneous causality exists between the two
outcomes. Further, we think that there is no reason to suspect otherwise. Suppression costs follow from suppression effort;
why should fire size (a physical outcome) affect suppression costs (an economic outcome) except through its relation to chosen
suppression effort? Why should costs per acre (economic) affect fire size (physical) except through its relation to chosen
suppression effort? We cannot conceive of a reason for either case, and we therefore maintain the view that the two outcomes
are correlated but do not directly (causally) affect each other.
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cost/acre and acreage equations can be estimated as a function of exogenous factors through implicit
suppression demand (this is a standard duality theory result). Finally, note that endogenous cost
per acre and acreage are each a function of both disturbances, and so, again, we would expect to
find a relationship in the (implicitly compound) disturbance process in estimated versions of these
equations.

The statistical distribution of disturbances in empirical work on fire size and costs approximate a
lognormal. A linear approximation of this two-equation system [C*(X, €), A*(X, €)] for our estimation
purposes is therefore characterized as

c=XB. +ve
7
a=Xp, + va, (7)

where c=In(C)and a=1In(A) are log-transformed vectors of cost per acre and acreage, and v. = f.(€)and
v = fa(€) are assumed normally distributed, related to € = [£, &4 |, and likely correlated through
s*=s(x, €) for a given fire.3

The Maximum Likelihood counterpart for the theoretical model is now developed. Because the
dataset includes data on large fires only (e.g. >300 acres), the disturbances v, are also truncated (vq
cannot be less than In(300) — Xf,), and this may lead to biased and inconsistent parameter estimates
if not accounted for. Given the log transformation of A and C and a minimum fire size, the conditional
distribution of the reduced form regression disturbances V=[v,v.] can be represented for a given
observation as (observation index i suppressed):

_ fve, va)
flve,vala > k) = Wv (8)
where k=In(K) is the logarithm of the minimum fire size K. The condition a>k implies
a—Xxpq>k—xp4, where x=X; represents observation i € N on each variable in the (N x J) matrix X,
where N is the total number of observations and J is the number of variables (constant included). The
joint distribution f(v¢, vq) is

flve, v )—i;exp (—Z)
R T -2 )
where, z — (axﬂa>2+ (cxﬂc)z . <2P(axﬂa)(6Xﬂc)> | o
Oa [ofs 040
16)) k;xﬂa
Oq

andPr(a > k) = Pr(vqg > k—xfB,)=1-

The associated log-likelihood function is

lnL:—Zn {(a+c)+ln (Zymaam/l _pZ) + (2(1fp2)> +1n (1 ) (k_oxﬂa)>} .

(10)

Parameter estimates for (B4, Bc, 04, 0¢, p) are the values that jointly maximize the log-likelihood
function (10).

3 Cobb-Douglas functional forms for production along with specific utility function forms can exactly imply this linear
regression structure for costs per acre and acreage.

4 See Greene (2008) for a more in-depth description of truncation and Mostafa and Mahmoud (1964) for the bivariate log-
normal distribution.

5 See Lien and Balakrishnan (2006) for theory underlying this type of model.
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Model prediction calculations

Following Lien (1985), the expectations of the untransformed original acreage and cost variables
are the following for observation i € N:

E[A{] = exp (xiﬂa+ ”;) : (11)
E[Ci]:exp (xiﬂc+0252) ) (12)

The medians of Z; € (A;, C;) are M[Z;]=exp(x;B;) (Mostafa and Mahmoud, 1964). The variance for
expected acreage is calculated using the Delta method:

VIETA]] = GV[OIG (13)

where 01, (n+1)=(B2, 07) is the vector of m parameters in 8, as well as 0, Ze(A, C) and ze(a, c),

—

Vlél(m+1)x(m+1) is the estimated covariance of the estimates 6, and

JE[Z(0,X
Grxgmey = AN (14)
0-0

For our specific case with E[Z;] defined by Egs. (11) and (12), the gradient G is

G=[ElZlxn ElZlp - ElZlxy ElZ]]. (15)
The expected value of total expenditures isS:

(02 +02)
ElA;- Gi] = exp | XiBc + XiBy + —5—"= + poaoc | = E[Ai] - EIGi] - exp(poaor). (16)

Given that the truncation on A has been accounted for in parameter estimation, replacing (84, B¢,
04, 0¢, p)in Egs. (11)-(16) provides consistent predictions for acreage, costs/acre, and their variances,
and should be the basis for ex ante prediction and inference for acreage and cost/acre.

If cost and acreage predictions are desired and estimated only for fires that reach size K or greater,
the conditional expectations below should be used for prediction:

D(0q — (k—x;8,)/04a)

E[AjlA; > K] = E[A;]- B(—(k—xB,)/o0) (17)
EIGIA; > K] = E[G]- QD(Q’;E’j(’k(_";;ff/“;ﬁ;’“, (18)
ELA- A > K] = EIA]-EIG] - poeag - ZUT 4 Poc0a — (kK — %io))/ 0a) (19)

D(—(k —xiB,)/0a) ’

and @(.) is the standard normal cumulative density.”

6 Variances can be calculated via the Delta method in this case as well.

7 If acreage A and cost per acre C are both conditionally lognormal, then expenditures E=AC is also lognormal. Egs. (7)-(12)
and the estimation process would still be valid for estimating expenditures (CA) with truncation based on A simply by replacing
the variable C with the total expenditures variable CA and implementing maximum likelihood based on In(AC)=(a+c) as the
dependent variable. This might be a more direct approach for predicting CA, it complicates estimation of C alone and does not
save on degrees of freedom. On a related note, Lien and Balakrishnan (2006) provide a general treatment of the conditional
distribution of multiplicatively constrained lognormal distributions such as would be the case if sample truncation were based
on total expenditures, as in a sample that included fires such that A-C>K.
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Marginal effects and percentage effects

The dependent variables in the regressions are the logarithm of C and A, and all regressors are
transformed in some way prior to estimation. Therefore, the parameters on continuous variables take
the general form B; = 0ln(y;)/dg(x;;), where y; € (G;, A;), g(+) is regressor transformation function, i€ Nis
the observation index and j €] is a regressor index. The marginal relationships between an exogenous
variable and the dependent variable are then dy;/dx; =y;(0ln(y;)/0g(x;;))(0g(x;;)/ 0x;;) = yi B;(0g(xi; ) 0xyj).
The parameter estimates on all continuous variables except Energy Release and the sine and cosine
variables are log transformations. For these log-transformed variables, the parameter estimates rep-
resent elasticities: B; = dln(y;)/dIn(x;;) = (3y;/3x;; )(x;i/y;) for a given regressor x;, and the marginal effects
are 9dy;/dx;; = B;(yi/x;;). The most complicated regressor transformations apply to variables with cycli-
cal effects, such as month and aspect, which are transformed into cosine and sine waves. The month
transformation involves translating each of the 12 months into radians and then applying sine and
cosine functions. So, if m=month, then h(x;;) = 81 sin(x;) + B, cos(x;;), where x;;=27((m; —1)/12) and
month m; is a categorical variable ranging from 1 (January) to 12 (December). The marginal effect of
a change in month is dy;/d0m; = (2my;[/12)(B1cos(2m(m; — 1)/12) + Bysin(2w(m; — 1)/12)). This marginal
effect may switch from positive to negative over the course of a year depending on m;. The variable
Aspect is similarly transformed into radians and then into sine and cosine functions.

The marginal effects and elasticities of a continuous variable on E[A;], E[C;], and E[A; - C;] are rela-
tively straightforward to calculate. For example, based on Eq. (16), the marginal effect of x; on E[A; - Gi]
is 0E[A; - G;1/0xj =(Bgj + Bg) - EIA; - Gi], which would be calculated by replacing all of the parameters on
the right hand side of Eq. (16) with their estimated counterparts. The associated percentage effect of
this variable x; on E[A; - G;] would be (84 + B), and if x; =In(X;), then (B4 + B¢;) would represent an
elasticity of E[A; - ;] with respect to X;. The marginal effects of a change in a variable on the condi-
tional expectations of A, C,and A - C(as characterized in Eqs. (17)-(19)) are more complicated functions
involving the standard normal CDF and PDF.

For indicator (dummy) variables, the regression parameter estimates do not represent a percent-
age change in y; due to the category represented by the indicator variable. Rather, an unbiased and
consistent estimator of the percentage change from the base case of Y; due to an indicator variable d
is8:

=100 (exp (By— 5lpal) 1) (20)

The total estimated difference in the dependent variable y evaluated at some vector x and the base
case (with d=0) would then be y(x, d = 0) - p4. Similarly, the percentage difference in y; between two
non-base categories represented by dummy variables d; and d, can be can be calculated as

Barz =100 (exp (B — 59l0n1) ~1). 1)

where 61 = (Baz — Bg1) and V]6a1] = Var(Bg, ] + Var[Bg, 1 + 2Cov[ By, . Bg, |-

Percentage effects of a difference in a categorical variable from the base case on total expenditures
E[A; - C;] can be calculated using Eq. (21) using fac = (Baq + Bea), Where By and B are the coefficients
on parameters associated with a dummy variable d in the acreage and cost equation respectively.!©

8 See van Garderen and Shah (2002), who also provide an estimator for the variance of p.

9 Consider two observations on Y in a model with just two dummy variables: observation y!' has dummy vari-
able 1 equal to 1 and dummy variable 2 equal to zero, and y? has dummy variable 2 equal to 1 and dummy
variable 1 equal to zero, so that y'=a+pd;+e and y>=a+B,d,+e. The percent difference between y?> and y! is
(Y2 —y")Iy' =(exp(a+ By +&1) —exp(a+ B +£2))exp(a + By +&1)=exp(B2 — B1)exp(e2 — 1) — 1. Taking expectations, applying
Kennedy’s (1981) bias correction, and substituting 21 = (Baz — Ba1 ) provide E[(y? — y1)/y'] = exp((P21) + (1/2)0[0211) — 1. Mul-
tiply this by 100 to get a percentage value.

10 Comparing the effects of two non-base categories on total expenditures using parameter estimates both equations is a
straightforward but tedious extension of this calculation.
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Data

The fires used in this analysis come from a database maintained by the Rocky Mountain Research
Station (RMRS). This database contains expenditure data and fire characteristic information for indi-
vidual large (300 +acre) wildfires reported by the USDA Forest Service and the Department of Interior
(DOI). The data on large DOI fires includes the years 2004 onward. Expenditures include federal expen-
ditures obtained from the financial systems of the USDA Forest Service and the DOI and do not include
state expenditures, except those already accounted for in the federal expenditure databases. There-
fore, the expenditures on any given wildfire are the sum of the federal expenditures on that particular
fire.

Fire characteristic data in the RMRS database come either directly from the information reported
in the fire occurrence databases of the federal land management agencies or are calculated using the
reported latitude and longitude of the ignition point of the fire. The federal fire occurrence databases
include: (1) the National Interagency Fire Management Integrated Database (NIFMID) - Forest Service,
(2) the Wildland Fire Management Information system (WFMI) - Bureau of Land Management, Bureau
of Indian Affairs, and National Park Service, and (3) the Fire Management Information System (FMIS) -
Fish and Wildlife Service. See Gebert et al., 2007 for a fuller description of the data and data collection
process.

We do not have data for marginal suppression costs r. We utilize annual and USFS district dummy
variable in our regressions in an attempt to capture aggregate but unobservable differences across
years and regions, including variation in labor and rental rates for suppression equipment.

We restrict our analysis to fiscal years 2004 through fiscal year 2009 (the most current information
during analysis). DOI expenditure data for individual fires is difficult and time consuming to collect
given the different accounting systems and rules used by each of the DOI agencies. In fiscal year
2004, the FireCode system was implemented “to standardize fire incident financial coding for fire
suppression and subsequent emergency stabilization . .. to provide the capability to effectively track
and compile the full cost of a multi-jurisdictional fire suppression effort” (see USDI, 2011). Therefore,
from fiscal year 2004 on, the expenditure data collected by RMRS included all federal expenditures,
whereas previously it had only included Forest Service expenditures. Additionally, we also restricted
our analysis to fires 300 acres or more in size, which is the size generally associated with fires that have
escaped initial attack. Moreover, equations developed to estimate expenditures are more likely to be
used once a fire escapes initial attack, when it becomes subject to more oversight and cost becomes
more of an issue due to larger acreages and longer durations.

Our final dataset consists of 2061 DOI fires. The dependent and independent variables used in this
analysis are defined in Table 1, with summary statistics for our dataset provided in Table 2.

Results

This section reports regression results, including some detailed discussion of selected outcomes
for interpretive illustration. We also provide a brief comparison of the bivariate regression perfor-
mance with results from a univariate regression approach. We then provide cost per acre, acreage,
and expenditure forecasts based on the bivariate truncated regression.

Regression estimates

Table 3 provides regression parameter estimates. A limited set of the estimated regression relation-
ships are interpreted here for illustration. First consider the effect of Elevation. The estimated change
in fire acreage in response to a one percent higher elevation is —0.0456% (though not statistically
significantly so, with p=0.885), and costs per acre increase by an estimated 0.2714% (p <0.075).! The
variable Energy Release ranges from 1 to 100, and so the parameter represents a percent change in the
dependent variable with respect to a one unit change in Energy Release. In this case, acreage increases

11 p-Values are omitted in the tables to conserve space.
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Table 1

Independent variables used in development of regression equations.
Fire characteristics Variable definition Source
Fire environment
sin(Aspect), cos(Aspect) Sine and cosine of aspect at point of origin in 45 degree Fire Occurrence Databases

increments

Slope In(Slope percent at point of origin) Fire Occurrence Databases
Elevation In(Elevation at point of origin) Fire Occurrence Databases
Latitude Decimal degrees Fire Occurrence Database
fuel i Dummy variables representing fuel type at point of origin. Fire Occurrence Databases

Grass = NFDRS fuel model A, L, S, C, T, N; Brush = NFDRS fuel
model F, Q; Slash = NFDRS fuel model J, K, I; Timber = NFDRS
fuel model H, R, E, P, U, G; brush 4 (reference
category)=NFDRS fuel model B, O.

Energy release Energy release component (ERC) calculated from ignition point Calculated
using nearest weather station information (cumulative
frequency)
values at risk
In(distance) Natural log of distance from ignition to nearest census Calculated
designated place
In(housing 20) Natural log of total housing value in 20 mile radius from point Calculated
of origin (census data)/100,000
Wilderness Dummy variable =1 if originated in a wilderness area, zero Calculated
otherwise
Other
sin(Month), cos(Month) Sine and cosine of month/year translated into radians Calculated
Natural cause Dummy variable =1 if natural, 0 if human caused Fire occurrence database
year Dummy variables representing fiscal year Fire occurrence database
region i Dummy variables for Geographic Area Coordination Center Fire occurrence database

(DOI), which represent distinct management regions.

by 0.0326% (p-value <0.001), and cost/acre decreases by 0.0041% with a one unit change in Energy
Release (though not with statistical significance: p=0.17).

Wilderness is a dummy variable representing fires that started in designated Wilderness areas.
Based on Eq. (20), fires in wilderness areas are an estimated 904% larger (p <0.001), and costs/acre are
about 46% lower than fires outside of Wilderness designations (p <0.001). Year, region, and fuel type
are represented by dummy variables as well, with 2003, region 1, and fuel type 4 (grass) as the base
case. Thus, the coefficients on the region 2, for example, represent the difference between region 1
and region 2. Again using Eq. (20), region 2 tends to have fires that are 86% smaller than region 1, and
cost/acre 5.6% smaller than region 1, though this last estimate is not statistically different from zero at
conventional confidence levels. Calculating the percent difference between two non-base cases relies
on the content of footnote 9. For example, acreage of fires categorized as fuel type 5 (timber/slash) are an
estimated 69% smaller (p <0.001) than acreage of fires categorized as fuel type 2 (brush_4 [chaparral]),
but cost/acre are estimated to be 126% higher (p = 0.040) for timber/slash fires than chaparral fires (the
covariances between the parameters necessary to calculate these two values are 0.00107 and 0.00093,
respectively).

The effects of explanatory variables on total expenditures can also be calculated. For example, the
percentage change in predicted expenditures E[A; - C;] with respect to a change in Energy Release com-
ponent is (0.0326 — 0.0041)=0.0285 (p <0.001). The elasticity of with respect to a change in elevation
is (—0.0456 +0.2714)=0.2258, though this is not statistically different from zero (p =0.324). Finally, a
fire started in a wilderness area is associated with 440% higher expenditures than otherwise (p <0.001),
based on Eq. (21).

Importantly, note that the estimate for the correlation between errors is p=-0.51 (p<0.0001).
This negative correlation suggests that, after all included explanatory variables have been accounted
for, the unobserved component of costs per acre are high when acreage is low, and vice versa. This is
consistent with our theory (Eq. (5)) for the effects of unobserved (random) factors, and widely observed
negative correlation between cost per acre and fire size more generally. It also indicates that selecting
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Table 2
Summary statistics.
Variable N=2061
Mean S.D. Min Max

A 10,262 45,449 300 1,000,000

C 204.66 673 1.04 19,535
In(elevation) 1.27 0.67 0.00 2.30
Latitude 40.74 8.59 2.84 68.26
In(housing 20) 14.99 10.49 -9.21 25.93
Energy Release 80.31 18.43 1.00 100.00
In(distance) 245 0.94 -2.14 6.38
In(slope) 0.26 0.43 0.00 1.61
cos(Aspect) 0.44 0.76 -1 1
sin(Aspect) 0.00 0.48 -1 1
cos(Month) -0.60 0.56 -1 1
sin(Month) 0.03 0.56 -1 1
Wilderness 0.34 0.47 0 1
natural cause 0.56 0.50 0 1
year 2004 0.100 0.301 0 1
year 2005 0.203 0.403 0 1
year 2006 0.284 0.451 0 1
year 2007 0.184 0.388 0 1
year 2008 0.112 0.315 0 1
year 2009 0.105 0.306 0 1
region 2 0.056 0.230 0 1
region 3 0.083 0.276 0 1
region 4 0.353 0.478 0 1
region 5 0.069 0.253 0 1
region 6 0.107 0.309 0 1
region 8 0.182 0.386 0 1
region 9 0.015 0.122 0 1
region 10 0.070 0.256 0 1
fuel 1 0.121 0.327 0 1
fuel 2 0.066 0.247 0 1
fuel 3 0.024 0.152 0 1
fuel 5 0.119 0.324 0 1

a sample by truncation based on acreage is effectively imposing sample selection on costs per acre as
well.

To examine the value of accounting for the bivariate relationship between cost per acre and trun-
cated acreage, we estimate a univariate regression of cost without accounting for acreage, and compare
the root mean squared forecast errors from this regression to that from the bivariate model.!? The
RMSE for the cost per acre equation from the bivariate model is 1.281, whereas the RMSE from the
univariate regression is 1.513, suggesting that there is a loss of information and lower estimation pre-
cision with the univariate approach, because it does not account for correlation in the disturbances
between cost per acre and acreage and therefore also does not incorporate the effects of acreage
truncation on costs per acre.

Forecasts

We now provide a summary of in-sample predictions based on these regressions, the calculation of
which is the primary objective of the development of this model. Table 4 and Fig. 1 provides summary
statistics and distributions of both the unconditional predictions and the predictions conditional on
the fire being selected into the sample based on fire size.

12 The root mean squared error for regression equation j is calculated as RMSE' = /&8 /(N — K), where &/ are the estimated
errors from regression j.
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Table 3

regression results.
Regressors Dep. Vars.

In(acres) [a] In(cost/acre) [c]
B se(B) B se(B)

In(elevation) —0.0456 0.3143 02714 0.1523
latitude —0.0975 0.0464 0.0016 0.0208
In(housing 20) -0.012 0.012 0.0127 0.0056
Energy Release 0.0326 0.0069 —0.0041 0.003
In(distance) 0.5651 0.1536 -0.1831 0.0677
In(slope) 0.2889 0.2482 0.4326 0.1266
cos(Aspect) 0.0691 0.1507 -0.1972 0.0708
sin(Aspect) 0.1547 0.1948 -0.1479 0.0954
cos(Month) —0.6925 0.3442 -0.3782 0.1406
sin(Month) 0.2409 0.2393 —0.0279 0.0998
Wilderness 2.3419 0.2663 —0.6086 0.1217
natural cause 1.2234 0.2917 —0.2263 0.1235
year 2003 base
year 2004 —2.0556 1.0613 1.1486 0.5029
year 2005 —2.0801 1.0427 0.8268 0.4928
year 2006 -2.1214 1.042 0.7845 0.4943
year 2007 -1.9702 1.0629 0.6929 0.5001
year 2008 -3.0124 1.0829 1.3108 0.5091
year 2009 -2.385 1.0931 0.6925 0.5091
region 1 base
region 2 -1.7047 0.7083 —0.0046 0.3253
region 3 -1.6314 0.8587 0.2227 0.3856
region 4 0.4153 0.5519 —0.0088 0.2397
region 5 0.1005 0.7405 0.0976 0.3451
region 6 0.4512 0.5387 -0.2014 0.2381
region 8 —2.5477 0.9816 —0.6861 0.4266
region 9 -5.2231 1.7605 0.389 0.6373
region 10 5332 1.1993 —2.2759 0.562
fuel 1 —0.1058 0.337 0.4495 0.1624
fuel 2 0.9401 0.4328 0.1245 0.2146
fuel 3 0.5295 1.034 1.1079 0.3802
fuel 4 base
fuel 5 —0.3044 0.4052 0.9272 0.1801
constant 4.5941 2.5449 4.3807 1.115
Oq 2.5677 0.1114
o¢ 1.6648 0.0411
P -0.5114 0.0302
x* 198.4 p value <0.0000
N 2061

Table 4

Summary statistics for actual and expected acreage (A), cost per acre (C), and expenditures (A-C). N=2061.
Variable Mean S.D. Min Max
A 10,262 45,449 300 1,000,000
E[AJA>100] 20,300 50,451 595 818,026
E[A] 14,157 46,565 0 787,472
C 205 673 1 19,535
E[CIA>100] 206 197 7 2389
E[C] 783 747 21 9037
A-C 592,724 2,586,133 372 83,700,000
E[A-CIA>100] 857,505 1,287,676 3974 15,400,000
E[A-C] 483,447 1,020,253 9 13,800,000
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dots (upper outliers truncated our of graph for illustrative purposes).

Fig. 1 shows expected acreage and costs, E[A] = E[Acres] and E[C] = E[Cost/Acre] in row 1, and their
log transformations in row 2. The distributions of the expected values are highly skewed to the right,
whereas the logarithms of these expectations are more symmetric.

Fig. 2 provides a comparison of the log transformation of the actual data, the expected acreage
conditional on being greater than the minimum acreage of 300, and the expected acres for the pop-
ulation[s] as a whole. For the actual data, In(acres)=a (column 1, row 1 in the figure), there are no
observations below In(300)=5.7, and there is a sharp truncation at this value, with several observa-
tions with A equaling exactly 300 acres (44 of 2061, or 2.1%). Note that all conditional predictions
In(E[A|A >300]) based on Eq. (17) fall at or above the minimum of In(300)=5.7, as imposed by the
model. However, the log of predicted acreage for the population as a whole, E[A] (based on Eq. (11)),
has a more symmetric distribution and ranges far below the sampling cutoff of In(300)=5.7. This is
precisely what we would expect, because the unconditional prediction pertains to the underlying
population as a whole rather than only the subsample truncated at A=300.

Fig. 2 column 2 shows the log transformations of actual cost per acre (row 1), predicted costs
conditional on A>300, and predicted costs regardless of whether A>300. The distribution of the
logarithm of conditional predictions In(E[C|A > 300]) tends to be farther to the left than the distribution
of the log of unconditional predicted costs In(E[C]), which is loosely opposite of the case for the acreage
predictions in column 1. This is because the correlation p between acreage and cost per acre is negative.
Thus, the conditional predictions would tend to underestimate the costs per acre for the population
as a whole because they pertain only to larger fires. Analogous to acreage, Eq. (12) should be used for
estimating costs prior to knowing whether it will ultimately become 300 acres or more, and Eq. (18)
should be used for fires of unknown final fire size but known to be larger than 300 acres.

Fig. 3 contains graphs of the unconditional expected values and median values for acreage and
costs, as well as their estimated confidence intervals. For comparison, the actual values of acreage and
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Fig. 4. Effect of month and distance on unconditional and conditional acreage and cost per acre predictions.

cost are included as gray scatter marks. However, note that these actual values are conditioned on
being in the sample (A > 300). As such, the expected values and confidence intervals may appear “too
low” for the acreage graphs, and too high for the cost graph relative to the actual plotted values.!3 The
difference between the median and the expected values is exp(c2 /2), for Z € (A, C). The expected value
of fire size and acreage is much larger than the corresponding median values because of the skewness
of the sampling distributions of these variables.

Fig. 4 allows a closer examination of the effects of individual variables on the conditional and
unconditional predictions. In particular, consider the effects of the variable distance and month on the
predicted acreage and costs. Fig. 4, row 1 column 1 shows the effect of distance on E[A] and E[A|A > 300].
Row 1 column 2 shows the effect of distance on E[C] and E[C|A > 300] The prediction of E[A]A>300]
tends to be higher for any given value of distance than does E[A]. In contrast, the effect of distance
leads to a larger unconditional predicted C, but lower conditional predicted C. This difference is due
again to a negative correlation coefficient p. The second row of Fig. 4 shows the effect of month on the
conditional and unconditional predictions of A and C. Note that the peak fire size is slightly earlier in the
year than the peak cost per acre, and that as before, conditional acreage is higher than unconditional
acreage but the reverse is true for cost per acre.

Conclusion

This paper develops a method to generate ex ante predictions of fire size and costs per acre based
on fire characteristics observable at the time of initial fire ignition, or at least prior to suppression

13 It is also true that these 95% confidence intervals are likely to be too narrow even relative to estimation. The Delta method
provides a linear approximation to the standard errors of the prediction that are likely to be an underestimate due to the
nonlinearity of the exponential function used to calculate E[A] and E[C].
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completion. As is common for wildfire modeling, our estimation efforts rely on a sample of data such
that the fire records are systematically excluded from the sample if the final fire size is smaller than a
lower bound. For data that are systematically sampled in this or similar fashion, the sampling process
must be integrated into the modeling and estimation methods in order to generate statistically con-
sistent parameter estimates and predictions. Further, fire acreage and cost/acre are often observed to
be negatively correlated, and accounting for this correlation explicitly can help improve the efficiency
(precision) of model estimates.

In order to account for these factors, we develop a Maximum Likelihood two-equation regression
model with acreage-based truncation from below, assuming a bivariate lognormal disturbance pro-
cess. We utilize the regression estimates to generate predicted values for acreage for the population as
a whole, and for fires conditional on being a particular size or larger. The distributions of these model
predictions allow distinctive illustrations of the importance of accounting for sample truncation when
generating predicted outcomes based on ex ante information. The bivariate model that accounts for
truncation appears to be promising for cost predictions as compared to a univariate model.
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