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Highlights 

 The disadvantages of using extent analysis method for network selection problems are 

discussed. 

 Weights of network parameters are obtained by applying a nonlinear fuzzy 

optimization model. 

 Consistency Index with this proposed model is better than the existing non-linear 

models. 

 Parameterized utility functions are used to evaluate the utility values of network 

attributes. 

 Results obtained for network selection with the MEW method are better than TOPSIS 

and SAW methods. 

 

Abstract: Next generation wireless networks will integrate various heterogeneous 

technologies like WLAN, WiMax and cellular technologies etc., to support multimedia 

services with higher bandwidth and guaranteed quality of service (QoS).  In order to keep the 

mobile user always connected to the best wireless network in terms of QoS parameters and 

user preferences, an optimal network selection technique in heterogeneous networks is 

required. This paper proposes a novel fuzzy-Analytic Hierarchy Process (AHP) based 

network selection in heterogeneous wireless networks. Triangular fuzzy numbers are used to 

represent the elements in the comparison matrices for voice, video and best effort 

applications. Deriving crisp weights from these fuzzy comparison matrices is a challenging 

task. When extent analysis method is applied, irrational zero weights are obtained for some 

attributes. Due to this, many important criteria are not considered in the decision making 

process. To overcome this problem, a new non-linear fuzzy optimization model for deriving 

crisp weights from fuzzy comparison matrices for network selection is presented. The 

weights obtained from this model are more consistent than the existing optimization models. 

Also, parameterized utility functions are used to model the different Quality of Service (QoS) 

attributes (bandwidth, delay, jitter, bit error rate) and user preferences (cost) for three 

different types of applications. Finally, scores are calculated exclusively for each network by 

three MADM (Multiple Attribute Decision Making) methods: Simple Additive Weighting 

(SAW), TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and 

MEW (Multiplicative Exponential Weighting). Results show that the MEW method gives 

more appropriate scores with utility functions than the SAW and TOPSIS methods. 



 

Keywords: Network Selection, Multiple Attribute Decision Making, Fuzzy-AHP, 

Heterogeneous Wireless Networks, Utility functions 

1. Introduction 

The various heterogeneous wireless technologies like WLAN, WiMax and cellular 

technologies like 2G/3G etc., will be integrated in future generation wireless networks 

through a single IP-based core. When a mobile device roams in these heterogeneous 

environments, it undergoes vertical and horizontal handovers continuously. In order to 

provide Always Best Connected (ABC) property, an optimal Vertical Handover Decision 

(VHD) is required. Many VHD methods are presented in the literature that includes fuzzy 

logic, game theory, function based, user-centric and Markov decision process (Zekri et al. 

2012). MADM methods include multiple attributes with medium complexities while the other 

methods have higher complexity with the increase in number of attributes.  So, in this paper, 

the focus is only on MADM based network selection methods.     

Rao (2007) has presented various MADM methods. Among these, most popular 

methods are SAW (Fishburn, 1967) MEW (Miller, 1969), TOPSIS (Hwang, 1981) 

PROMETHEE (Brans, 1985) and ELECTRE (Roy,1991). AHP method (Saaty, 1980) is 

widely used for providing weights to these MADM methods. Song and Jamalipour (2005) 

have presented AHP and Grey Rational Analysis (GRA) based technique where AHP has 

been used for selection criteria and GRA evaluates heterogeneous networks. The proposed 

methodology combines the AHP to decide the relative weights of criteria set according to 

network’s performance, as well as the GRA to rank the network alternatives. Goyal and 

Kaushal (2016) have applied AHP method to find the effect of mobility of the mobile device 

on the handover decision process in heterogeneous wireless networks. Lahby et al. (Lahby et 

al, 2013) have proposed an enhanced TOPSIS method by using the Analytic Network Process 

(ANP) to weight the criteria and then apply the TOPSIS method.  Various methods have been 

developed for the weight calculation of network attributes. Ahuja et al. (2014a, 2015) have 

proposed a novel network selection algorithm in a typical heterogeneous environment of 

EDGE and UMTS networks where the selection metrics are combined with PSO for relative 

dynamic weight optimization. Cost functions are used for network selection.  Charilas et al. 

(2014) have presented a framework that defines the weights of attributes based on the 

variance of network measurements. Principal Component Analysis and AHP are applied to 



derive parameter weights through pairwise comparison matrices. Yang and Tseng (2013) 

have proposed handoff decision algorithm that combines Weighted Rating Mean Analysis 

(WRMA) to rate the relative importance of network attributes and a fuzzy methodology of 

TOPSIS is used to select candidate networks. Ahuja et. al (2014b) have proposed a network 

selection algorithm in which weight estimation of attributes is computed using entropy and 

TOPSIS method has been used for network ranking. To achieve the consistency ratio of 

greater than 0.1 in AHP, Chandavarkar and Gudetti (2015a) have proposed a Simplified and 

Improved AHP (SI-AHP) technique which automatically computes the reciprocal matrix of 

attributes. This technique is further used in Simplified and Improved Multiple Attributes 

Alternate Ranking method (SI-MAAR) by Chandavarkar and Gudetti (2016) for solving the 

rank reversal problem when a network is added or removed from the selection list. In many 

situations, decision makers have to model their preferences with fuzzy values. But, all these 

approaches have not considered the fuzzy weights for modelling the AHP matrix. 

Fuzzy-based MADM methods are integrated for different types of selection and ranking 

problems (Samuel et al, 2017; Jain et al, 2016; Sangaiah et al, 2015a; Gopal et al,  2015; 

Sangaiah et al, 2015b). Different fuzzy based MADM methods have also been used for 

vertical handovers (Ismail and Roh, 2011).  Chamodrakas and Martakos (2011) have 

presented a novel method in which diverse QoS elasticises are modeled by parameterized 

utility functions and the fuzzy set representation of TOPSIS method is used to rank the 

networks. Mehbodniya et al. (2013) have presented Fuzzy Logic Controllers (FLCs) with on 

Fuzzy VIKOR (FVIKOR) to select the networks in heterogeneous wireless networks. Abid et 

al. (2012) propose an innovative handover decision making scheme based on a single 

criterion utility function that rates user satisfaction and captures sensitivity for each decision 

criterion. Chandavarkar and Reddy (2015b) have compared the performances of different 

sigmodial utility functions in heterogeneous wireless networks. Drissi et al. (2017) proposes a 

context aware network selection based on utility functions that consider QoS requirements 

and user preferences. Kosmides et al. (2014) introduce three utility functions based on the 

type of application that users request. Drissi et al. (2016) have used Fuzzy-AHP with SAW 

method to keep the users Always Best Connected (ABC). Khan et al. (2017) have used fuzzy 

rule based system to eliminate inappropriate networks and the selection of networks is done 

by TOPSIS method. Zineb et al. (2017) have proposed an enhanced vertical handover based 

on Fuzzy Inference MADM approach for heterogeneous networks. This method is based on a 

MADM technique with fuzzy logic inference system to reduce handover decision time. 



Skondras et al. (2016) have applied ANP to estimate the weights, and Fuzzy TOPSIS method 

has been implemented for network selection. But these methods have not applied any fuzzy 

prioritization methods to derive crisp weights from fuzzy comparison matrices.  

Chang (1996) has proposed an extent analysis method to Fuzzy-AHP comparison 

matrices for deriving crisp weights. Charilas et al. (2009) have applied the extent analysis 

method on Fuzzy-AHP to derive crisp weights of the network attributes, and ELECTRE 

method is used to rank the wireless networks.  Also, Brajković et al. (2015) have proposed an 

extent analysis Fuzzy-AHP with TOPSIS method for optimal wireless networks. Goyal et al. 

(2016a) have also used extent analysis method for network selection in heterogeneous 

wireless networks considering various network parameters. Goyal and Kaushal (2015) have 

analyzed the effect of utility functions on the extent analysis method for vertical handover 

scenarios. But, extent analysis method can lead to irrational zero weights in many cases 

(Wang et. al, 2008). Due to this, many important criterias are not considered in the decision 

making process. Therefore, extent analysis method can lead to zero weights for important 

network parameters in case of vertical handover decision problems also. 

 In this paper, a novel fuzzy-Analytic Hierarchy Process (AHP) based network 

selection technique is presented in heterogeneous wireless networks for voice, video, and 

best-effort applications. Triangular fuzzy numbers are used to represent the elements in the 

comparison matrices. When extent analysis method is applied, irrational zero weights are 

obtained for some attributes in all the three network applications. To overcome this problem, 

a new non- linear fuzzy optimization model for deriving crisp weights from fuzzy 

comparison matrices is proposed. Consistency of the comparison matrix is important as it 

determines how consistent the judgements are made by the decision maker in the comparison 

matrix. Inconsistencies may typically arise when many pairwise comparisons are performed.  

The weights obtained from the proposed model are consistent than other fuzzy optimization 

methods. Also, parameterized utility functions are used to model the different Quality of 

Service (QoS) attributes for different applications with SAW, TOPSIS and MEW methods. 

With the utility functions, the actual utility values of network parameters are considered for 

the network selection. Therefore, handover decisions are more appropriate with the proposed 

utility based network selection method. 

Rest of the paper is organized as follows. Section 2 presents the preliminaries required for the 

MADM based network selection methods. In section 3, the proposed Fuzzy-AHP based 

MADM technique for network selection is discussed. Section 4 presents the results and 



analysis of the proposed model with SAW, TOPSIS and MEW methods. Finally, Section 5 

concludes with future directions of research. 

 

2. Preliminaries 

In this section, basics of AHP, SAW, MEW, and TOPSIS are briefly presented. 

2.1 AHP 

The AHP method was introduced by Saaty (1980).  It is one of the most popular methods for 

solving complex decision making problems which decomposes the problem into a system of 

hierarchy of goals, attributes and alternatives (Rao, 2007). Triantaphyllou and Lin (1996) 

have listed the following advantages of AHP:  (1) AHP can handle both quantitative and 

qualitative data.  (2) It helps the decision maker to organize the critical aspects of a problem 

in a hierarchical structure. (3)  Decision makers can derive criteria weights and alternatives 

scores from pairwise comparison matrices of AHP. (4) The consistency of the pairwise 

comparison matrix can be measured. (5) Very complex problems can be solved by combining 

AHP with various operation research techniques. With these advantages of AHP, it is widely 

used for MADM problems. Main steps in AHP include (Rao, 2007, Goyal and Kaushal, 

2016c): 

(a) Organizing the problem hierarchically 

The problem is formulated in a hierarchal structure. The overall goal of the decision-

making problem is placed at the topmost level. The 𝑛 criteria i.e., 𝐶1, 𝐶2,, 𝐶3, … , 𝐶𝑛 are 

placed at intermediate level and the 𝑚 alternatives i.e., 𝐴1, 𝐴2,, … , 𝐴𝑚 are placed at the 

lowest level. A decision table is made between alternatives and criteria as shown in 

Table 1. 𝑚𝑖𝑗  represents the value of  𝑗𝑡ℎ  criterion with respect to  𝑖𝑡ℎ  alternative, 

where = 1,2,… ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛 .  

 

(b) Construction of pairwise comparison matrices 

Pairwise comparison judgment matrices are constructed by considering the 

preferences of the decision makers in the form of comparison ratios. These judgments 

matrices of criteria or alternatives can be defined from the reciprocal comparisons at 

the same level. Pairwise comparisons are based on standard scales (1= equal 



preference; 3= weak preference; 5= strong preference; 7= demonstrated importance; 

9= absolute preference). A comparison matrix 𝐴𝑛∗𝑛  with elements 𝑎𝑖𝑗  where , 𝑗 =

 1,2, . . . , 𝑛  is shown in equation (1). Each step of comparison for a level with n 

elements requires 𝑛 (𝑛 − 1)/2 judgments.  

 

𝐴𝑛∗𝑛 = [

𝑎11 𝑎12⋯ 𝑎1𝑛
𝑎21 𝑎22⋯ 𝑎2𝑛
⋮   ⋮       ⋮
𝑎𝑛1 𝑎𝑛2⋯ 𝑎𝑛𝑛

]                                                                (1) 

 

(c) Calculating weights from judgment matrices 

Weights of each criterion and alternatives’ scores and can be derived from 

comparison matrices. Eigenvector method is the most common method to derive 

priority vector weights (𝑤1, 𝑤2, 𝑤3, …𝑤𝑚 )
𝑇 . Then consistency of the weights should 

also be checked.   Most common consistency method for calculating consistency is 

Saaty’s Consistency Index method (1980). 

 

(d) Alternatives ranking 

The final step is to find the scores of each alternative by aggregating all the local 

scores calculated in the previous step.  

 

 

2.3 SAW and MEW 

Before applying the MADM methods, we have to normalize the decision table values, 

i.e., (𝑚𝑖𝑗)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 . The normalized table is obtained by dividing the value of the beneficial 

attribute with the maximum value of attribute among the alternatives and by dividing the 

minimum value of the non-beneficial attribute among the alternatives with the value of 

alternative.  

Simple Additive Weighing (SAW) (Fishburn, 1967) is the simplest and most widely 

used method MADM method for computing the overall composite score. After obtaining the 

weights of the attributes from the AHP method, final scores are calculated as shown in 

equation (2). 

 

Final Score of 𝑖𝑡ℎ alternative,  



   𝑃𝑖 =  ∑ 𝑤𝑗 ∗ (𝑚𝑖𝑗)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑚
𝑗=1                                                                 (2) 

 

MEW (Miller, 1969) method is another method to compute the final scores which is 

similar to the SAW method. The main difference in this model is that instead of addition, 

multiplication is used as shown in equation (3). 

 

Final Score of 𝑖𝑡ℎ alternative, 

  𝑃𝑖= ∏ (𝑚𝑖𝑗)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑤𝑗𝑚

𝑗=1                                                                           (3) 

2.4 TOPSIS method  

Hwang and Yoon (1981) developed TOPSIS method that is based upon the concept of 

Euclidean distances from the ideal best and ideal worst solutions. After obtaining the weights 

by AHP method the main steps of TOPSIS method can be summarized as follows: 

Step 1: Obtained the normalized decision matrix with elements (𝑚𝑖𝑗)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  as shown in 

equation (4), where 𝑚𝑖,𝑗  is the element of the matrix is gives the 𝑗𝑡ℎ  attribute of 𝑖𝑡ℎ 

alternative and 𝑛 is the number of alternatives. 

(𝑚𝑖𝑗)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑚𝑖,𝑗

[∑ 𝑚𝑖,𝑗
2𝑛

𝑗=1 ]1/2
                                                                    (4) 

Step 2: Obtain the weighted normalized matrix 𝑉𝑖,𝑗 as shown in equation (5). 𝑤𝑗 is the weight 

given by AHP method in each application. 

𝑉𝑖,𝑗 = 𝑤𝑗(𝑚𝑖𝑗)𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑                                                                              (5) 

Step 3: Obtain the ideal best (𝑉+) and ideal worst (𝑉−) solutions according to equations (6) 

and (7) respectively. 

   𝑉+ = {𝑚𝑎𝑥
𝑖
 (𝑉𝑖,𝑗|𝑗є𝐽);

𝑚𝑖𝑛
𝑖
 (𝑉𝑖,𝑗|𝑗є𝐽

′), 𝑖 = 1,2,3,… 𝑛}    = {𝑉1
+, 𝑉2
+, 𝑉3
+, … . 𝑉𝑚

+}                        

(6) 

  𝑉− = {𝑚𝑖𝑛
𝑖
 (𝑉𝑖,𝑗|𝑗є𝐽

′);𝑚𝑎𝑥
𝑖
 (𝑉𝑖,𝑗|𝑗є𝐽), 𝑖 = 1,2,3,… 𝑛}  = {𝑉1

−, 𝑉2
−, 𝑉3
−, … . 𝑉𝑚

−}                      

(7) 

𝐽  is associated with beneficial attributes like bandwidth and 𝐽’  is associated with non 

beneficial attributes like cost, delay and jitter. 𝑉𝑗
+ indicates the ideal value of the specific 



attribute of all the alternatives. 𝑉𝑗
−  indicates the worst value of the attribute among 

alternatives. 

Step 4: The separation measures from ideal solution are given by the Euclidian distance as 

shown in the equations (8) and (9) respectively. 

𝑆𝑖
+ = {∑ ( 𝑉𝑖,𝑗 − 𝑉𝑗

+)2𝑀
𝐽=1 }1/2,   𝑖 = 1,2, . . . , 𝑛                                                             (8) 

 𝑆𝑖
− = {∑ ( 𝑉𝑖,𝑗 − 𝑉𝑗

−)2𝑀
𝐽=1 }1/2 , 𝑖 = 1,2, . . . 𝑛                                                               (9) 

Step 5: The relative closeness of alternative to the ideal solution 𝑃𝑖 or the final score can be 

expressed as shown in equation (10) 

 𝑃𝑖 =
𝑆𝑖
−

𝑆𝑖
++𝑆𝑖
−                                                                                                (10) 

3. Proposed Fuzzy-AHP method for network selection 

In this section, proposed Fuzzy-AHP MADM based network selection technique is presented. 

In section 3.1, network selection problem is organized hierarchically by determining the 

decision table in the form of networks and attributes. Pairwise comparison matrices are 

formed with triangular fuzzy numbers.  Section 3.2 presents the methods for deriving crisp 

weights from these fuzzy comparison matrices. The utility values of attributes are obtained 

from parameterized utility functions as presented in section 3.3.  

3.1 Forming the fuzzy comparison matrices   

 

The process of the AHP method is for the certain judgments of the decision maker, but in the 

real world, there may be some problems where the decision maker is not sure about the exact 

preferences. So there is a need for dealing uncertainty the comparison matrices. To handle 

uncertainty in different situations, fuzzy sets have been implemented by Zadeh (1965). 

Therefore, Fuzzy-AHP has been proposed, in which the judgments in the comparison 

matrices are represented as fuzzy numbers or set of fuzzy numbers.  Linguistic terms are 

easier for human beings for judgments (for example less important, highly  important) than 

the numerical values (Cabrerizo et al, 2015; Wu et al, 2015, Morente-Molinera et al, 2016).  

Saaty has used the scale from 1 to 9 to convert linguistic terms into useful pairwise judgments 

in the comparison matrices as 1= equal preference; 3= weak preference; 5= strong preference; 

7= demonstrated importance; 9= absolute preference as discussed in the previous section. So, 



if the decision maker wants to model the problem with fuzzy judgments then the conversion 

of linguistic terms can be modeled as: About 3 = weak preference, About 5 = strong 

preference and so on. These uncertain judgments can be represented as the triangular fuzzy 

numbers (TFNs) as shown in Table 2. 

 

A TFN is described in equation (11) (Zimmermann, 1994) 

 

µ�̃�(𝑥) = {

𝑥−𝑙

𝑚−𝑙
𝑢−𝑥

𝑢−𝑚

0

 
      𝑙 ≤ 𝑥 ≤ 𝑚
   𝑚 ≤ 𝑥 ≤ 𝑢 
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (11) 

 

𝑙, 𝑚 𝑎𝑛𝑑 𝑢 respectively denote the smallest value, the most promising value and the largest 

possible value. The TFN �̃� can be represented as (𝑙, 𝑚, 𝑢). Fuzzy pairwise judgments can be 

converted to fuzzy scores as shown in Table 2 (Wang et. al, 2007), 𝑤ℎ𝑒𝑟𝑒 𝑎 =  2,3,… ,9 and 

b, c =1, 2,… ,9 𝑎𝑛𝑑 𝑏 <  𝑐. 

The network selection process considers three different applications: voice, video, and best-

effort applications. TFNs are used to represent weights in the fuzzy comparison matrices. 

While preparing judgment comparison matrix for each application, the priority of one 

attribute with respect to the other is taken as mentioned in (Yang and Tseng, 2013). Fuzzy 

weights are chosen according to Table 2. For voice applications, bandwidth attribute is not as 

important as delay and jitter. Cost is also given a higher priority as there is a huge difference 

in prices offered by cellular and WLAN technologies as shown in Table 3. For video 

applications, bandwidth is as important parameter as delay and jitter. Cost and bit error rate 

are not considered important parameters for video applications and hence they both are given 

low priority as shown in Table 4. While in the best-effort applications, the packets are to be 

transferred at a lower error rate over networks. Therefore, bit error rate has the highest 

priority as in comparison with all the attributes as shown in Table 5. Bandwidth is relatively 

more important than other attributes like cost, delay and jitter. So, it has given relatively 

higher priority for this application. The working of the proposed network selection technique 

is illustrated in Fig. 1. 

3.2 Deriving crisp weights from fuzzy comparison matrices  



As discussed in the above section, TFNs are used to represent the elements in comparison 

matrices. Deriving crisp priorities from fuzzy judgments is a challenging task. Many methods 

are proposed in the literature for deriving the crisp priorities from these matrices. Among 

these methods, the extent analysis method has been widely used. Three methods are 

presented for deriving the crisp weights from fuzzy pairwise comparison matrices, i.e., extent 

analysis method, fuzzy optimization model and the proposed model as discussed below:  

(a) Extent analysis method       

Extent analysis method was proposed by Chang (1996) in which X= {𝑥1, 𝑥2, … , 𝑥𝑛  } and G= 

{𝑔1, 𝑔2, … , 𝑔𝑚} are object and goal sets, respectively. The extent analysis of m values of 

goals for each object can be represented in the form of  𝑀𝑔𝑖
1 , 𝑀𝑔𝑖

2 , … ,𝑀𝑔𝑖
𝑚 , where  𝑖 =

1,2,… , 𝑛. All 𝑀𝑔𝑖
𝑗

 are triangular fuzzy numbers in the form of (𝑙,𝑚, 𝑢). 

Step 1: Compute the value of the fuzzy synthetic extent,  𝑆𝑖, on the 𝑖𝑡ℎ object according to 

the equation (12). 

𝑆𝑖 = ∑𝑗=1
𝑚  𝑀𝑔𝑖

𝑗
⊗ [∑ ∑ 𝑀𝑔𝑖

𝑗𝑚
𝑗=1

𝑛
𝑖=1 ]−1                                                                    (12) 

where  ∑𝑗=1
𝑚  𝑀𝑔𝑖

𝑗
= (∑ 𝑙𝑗

𝑚
𝑗=1 , ∑ 𝑚𝑗

𝑚
𝑗=1 , ∑ 𝑢𝑗)

𝑚
𝑗=1  and [∑ ∑ 𝑀𝑔𝑖

𝑗𝑚
𝑗=1

𝑛
𝑖=1 ]−1 =

(
1

∑ ∑ 𝑢𝑗
𝑚
𝑗=1

𝑛
𝑖=1

,
1

∑ ∑ 𝑚𝑗
𝑚
𝑗=1

𝑛
𝑖=1

,
1

∑ ∑ 𝑙𝑗
𝑚
𝑗=1

𝑛
𝑖=1

)  

Step 2:  Compute the degree of possibility of 𝑆2 and 𝑆1 as shown in equation (13).  𝑆2 and  𝑆1 

are calculated from Step 1. 

V (𝑆2 ≥ 𝑆1) =𝑠𝑢𝑝𝑦≥𝑥[min( µ𝑆2 
(𝑦),µ

𝑆1 
(𝑥)]                                                        (13) 

It can also be represented by equations (14) and (15). 

V (𝑆2 ≥ 𝑆1) = hgt (𝑆1⋂𝑆2) =  µ𝑆2 
(𝑑)                                                                   (14) 

µ
𝑆2 
(𝑑) = {

1
0
𝑙1−𝑢2

(𝑚2−𝑢2)+(𝑙1−𝑚1)

 
     𝑖𝑓 𝑚2 ≥ 𝑚1
   𝑖𝑓 𝑙1 ≥ 𝑢2
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                   (15) 

Step 3: Compute the degree of possibility for a convex fuzzy number to be greater than 𝑘 

convex fuzzy numbers 𝑆𝑖. This is to be calculated as shown in equation (16). 



V (𝑆 > 𝑆1, 𝑆2… . . 𝑆𝑘) = min V (𝑆 > 𝑆𝑖),    𝑖 = 1,2, . . . 𝑘.                                                   (16) 

 

Step 4: Calculate the weight vector for each comparison matrix as shown in equation (17):  

 (𝑤1, 𝑤2, 𝑤3)
𝑇 = (min V(𝑆1 ≥ 𝑆𝑗), min V(𝑆2 ≥ 𝑆𝑗) , … , min V(𝑆𝑘 ≥ 𝑆𝑗))

𝑇                                    

(17) 

where 𝑖 =  1,2, . . . 𝑘, 𝑗 = 1,2. . . . 𝑘, 𝑘 ≠  𝑗.   Weights are then normalized too satisfy 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1. 

 

The weights derived with extent analysis method for the applications are shown in Table 6. 

For voice application weight of BER is zero. For video applications, the weights of BER and 

cost are zero. For the best-effort applications, the weights of attributes delay, jitter, and cost 

are zero. Therefore, the extent analysis method has not made full use of all the information 

provided by fuzzy comparison matrices when it assigns irrational zero weights to some of the 

attributes.  

 

   

To address the issue of irrational zero weights, some non-linear fuzzy optimization models 

have been proposed in the literature (Wang et. al, 2007, Javanbarg, 2012) as discussed in 

subsection (b). These optimization models also solve the problem of reciprocal symmetric 

matrices in Fuzzy-AHP judgments discussed in (Mikhailov, 2003). 

(b) Fuzzy Optimization Model 

A Comparison matrix of the Fuzzy-AHP of n criteria is represented in the form of triangular 

fuzzy numbers a҄𝑖𝑗 = (𝑙𝑖𝑗, 𝑚𝑖𝑗 , 𝑢𝑖𝑗), where 𝑖 and 𝑗 =  1,2, . . . , 𝑛 and 𝑛 is the number of criteria 

or decision elements in the pairwise judgment matrix. Also  

𝑙𝑖𝑗 < 𝑚𝑖𝑗 < 𝑢𝑖𝑗,   if  𝑖 ≠ 𝑗 and                                                                         (18) 

  a҄𝑖𝑗 = a҄𝑗,𝑖 = (1,1,1),   if  𝑖 = 𝑗                                                                        (19) 

Crisp weights (𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇must satisfy the following fuzzy inequalities (Mikhailov, 

2003). 



𝑙𝑖𝑗  ≤̃  𝑤𝑖/𝑤𝑗 ≤̃  𝑢𝑖𝑗 ,                                                                                  (20) 

where 𝑤𝑖 > 0, 𝑤𝑗 > 0, 𝑖 ≠ 𝑗.  

To measure the degree of satisfaction for different crisp ratios, a membership function can be 

constructed as shown in the following equation: 

µ𝑖𝑗 (
𝑤𝑖

𝑤𝑗
) =

{
 
 

 
 

 

𝑚𝑖𝑗−(
𝑤𝑖
𝑤𝑗
)

𝑚𝑖𝑗−𝑙𝑖𝑗
 ,         0 < 𝑤𝑖/𝑤𝑗 < 𝑚𝑖𝑗

(
𝑤𝑖
𝑤𝑗
)−𝑚𝑖𝑗

𝑢𝑖𝑗−𝑚𝑖𝑗
    ,     𝑤𝑖/𝑤𝑗 ≥ 𝑚𝑖𝑗

                                                          (21) 

 where 𝑖 ≠  𝑗. This function is linearly decreasing over the interval (0,  𝑚𝑖𝑗 ] and linearly 

increasing over the interval [𝑚𝑖𝑗, ∞). Smaller value of this function means that the exact ratio 

𝑤𝑖/𝑤𝑗 is more acceptable. 

To find the crisp weights (𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇, Wang et al. (2007) and Javanbarg et al. 

(2012) have presented an optimization model in which objective function is given as follows: 

𝑚𝑖𝑛 𝐽(𝑤1, 𝑤2, . . . , 𝑤𝑛) 

   = 𝑚𝑖𝑛∑ ∑ [µ𝑖𝑗 
2 (
𝑤𝑖

𝑤𝑗
) ]𝑛

𝑗=1 
𝑛
𝑖=1               

                                           = 𝑚𝑖𝑛 ∑ ∑ {𝛿 (𝑚𝑖𝑗 −
𝑤𝑖

𝑤𝑗
) ∗ (
𝑚𝑖𝑗−
𝑤𝑖
𝑤𝑗

𝑚𝑖𝑗−𝑙𝑖𝑗
)

2

𝑛
𝑗=1

𝑛
𝑖=1  

                                                                       + 𝛿 (
𝑤𝑖

𝑤𝑗
−𝑚𝑖𝑗) ∗  (

𝑤𝑖
𝑤𝑗
−𝑚𝑖𝑗

𝑢𝑖𝑗−𝑚𝑖𝑗
)

2

}                                                  

(22) 

                                               

subject to ∑ 𝑤𝑘 = 1,
𝑛
𝑘=1   𝑘 = 1,2. . . , 𝑛. where 𝑖 ≠ 𝑗, and 𝛿(𝑥) = {

0,             𝑥 < 0
1,             𝑥 ≥ 0

                                                                                                                    

The consistency index (γ) of the fuzzy comparison matrix after obtaining the priority vector 

(𝑤1
∗, 𝑤2
∗, 𝑤3
∗… . . 𝑤𝑛

∗)𝑇 is calculated as shown in the equation (23) (Wang, 2007).  



γ = 𝑒−𝛼                                                                                  (23) 

where 𝛼 =  𝑚𝑎𝑥 {{µ𝑖𝑗  (
𝑤𝑖
∗

𝑤𝑗
∗)} |i, j = 1,2,… , n, i ≠ j}                                     (24) 

where µ𝑖𝑗  (
𝑤𝑖
∗

𝑤𝑗
∗) is the function of equation (21).    

γ always satisfies 0 ˂ γ ≤ 1. If it is greater than 𝑒−1 = 0.3679, all exact ratios are consistent. 

Teaching Learning Based Optimization (TLBO) (Rao et al, 2011; Rao et al, 2012) is applied 

to solve the optimization problem. Solving this optimization function can lead to inconsistent 

crisp weights (γ<0.3679) from fuzzy comparison matrices for video and best-effort 

applications as shown in the Tables 9 and 10, respectively. Therefore, an optimization model 

is required that will increase the value of consistency index defined in equation (23) as 

discussed in subsection (c). 

(c) Proposed Model  

To solve the problem of inconsistent weights derived from the Fuzzy-AHP comparison 

matrices, an optimization model is proposed by Goyal and Kaushal (2016c) as shown in 

equation (25). We have used this optimization model to derive consistent weights from the 

Fuzzy-AHP comparison matrices defined in Tables 4-6 for the network selection problem. 

min  𝐽(𝑤1, 𝑤2, 𝑤3, … ,𝑤𝑛)   

                                                  =   𝑚𝑖𝑛{𝛼}                                

                                             = min {max {µ𝑖𝑗 (
𝑤𝑖

𝑤𝑗
)}}  

 

                                                   = min {max{𝛿 (𝑚𝑖𝑗 −
𝑤𝑖

𝑤𝑗
) ∗  
(𝑚𝑖𝑗−

𝑤𝑖
𝑤𝑗
)

𝑚𝑖𝑗−𝑙𝑖𝑗
 

                                                        +   𝛿 (
𝑤𝑖

𝑤𝑗
−𝑚𝑖𝑗) ∗

(
𝑤𝑖
𝑤𝑗
−𝑚𝑖𝑗)

𝑢𝑖𝑗−𝑚𝑖𝑗
}}                                               

(25) 



subject to ∑ 𝑤𝑘 = 1,
𝑛
𝑘=1   𝑘 = 1,2… , 𝑛 and  𝛿(𝑥) = {

0,             𝑥 < 0
1,             𝑥 ≥ 0

                                                                                                                  

If the value of α is minimized, the value of γ will be maximized. Therefore, min-max 

optimization problem as defined in equation (25) is proposed in this paper. TLBO is again 

applied to solve the optimization model. With the proposed model, weights derived are more 

consistent than the fuzzy optimization model discussed in subsection (b) for all the 

applications as shown in Tables 7-9. In case of voice application for optimization model 

defined in equation (22) , 𝛼 is calculated as following                                                      

  max (µ14  (
𝑤1

𝑤4
) , µ21  (

𝑤2

𝑤1
) , µ23  (

𝑤2

𝑤3
) , µ24  (

𝑤2

𝑤4
) , µ25  (

𝑤2

𝑤5
) , µ31  (

𝑤3

𝑤1
) , µ34  (

𝑤3

𝑤4
) , µ51  (

𝑤5

𝑤1
) , µ53  (

𝑤5

𝑤3
) , µ54  (

𝑤5

𝑤4
)) 

= max (0.3909, 0.0719, 0.5804, 0.0570, 0.6721, 0.4821, 0.1178, 0.2642, 0.4916, 0.2524) = 0.6721 

Therefore CI= 𝑒−0.6721 = 0.5106. Similarly the values of CI can be calculated for other 

cases. 

 

3.3 Utility Functions 

Utility functions are used to obtain the actual utility value of an attribute (Chamodrakas and 

Martakos, 2011). Different applications with different QoS preferences will have different 

utility values for a same network. Thus, the individual preferences should be taken into 

account in the utility evaluation. The utility value of an attribute is derived based on the 

requirement of that attribute for a particular application. If two networks are satisfying the 

minimum and maximum requirements of an attribute required for that application, the utility 

values of both the networks for that attribute will be closer. The requirement of attributes for 

different applications is illustrated in Table 10 (Chamodrakas and Martakos 2011, Skondras 

et al. 2016, Yang and Tseng, 2013) 

 

BER and cost requirements are considered same for all types of applications because even if 

a network is more expensive or having more error rate, even then a user may want to access 

it. Weights are given differently for each application as illustrated in the previous section. 

Three types of utility functions are used in this study: 1) Sigmoid function 2) Monotonically 

increasing function 3) Linearly decreasing function. The sigmoid function is used when the 

value of the minimum and maximum requirement of an attribute is given. For beneficial 



criteria like bandwidth the utility function is 𝑓(𝑥) = (1 + 𝑒−𝑎(𝑥−𝑏))−1. For non-beneficial 

criteria like delay and jitter, the utility function is 𝑔(𝑥) = 1 − 𝑓(𝑥). The parameters 𝑎 and 𝑏 

are needed to be tuned to model the elasticity for QoS parameters. For greater values of 𝑎 the 

function becomes as a step function as illustrated in the Fig 2. When there is only the 

minimum requirement of the attribute, a monotonically increasing function 𝑢(𝑥) =

(−𝑐/𝑥) + 1 is used for beneficial criteria as shown in Fig. 3 and 𝑢(𝑥) = (−𝑥/𝑐) +1, a linear 

decreasing function is used for non-beneficial criteria as shown in Fig. 4 where negative 

values are adjusted to zero. The utility functions used and their respective parameters for 

attributes in three applications are shown in Table 11.  

4. Evaluation of the proposed technique 

4.1 Numerical Example 

In order to illustrate the benefits of the proposed method we designed a simulation 

experiment according to application QoS requirements, the user preferences and the network 

characteristics. Five network attributes, bandwidth, delay, jitter, bit error rate and cost are 

considered for network selection. This experiment incorporates a mobile node that moves 

within the range of five different networks  𝑁1, 𝑁2,𝑁3, 𝑁4, 𝑎𝑛𝑑 𝑁5 . Table 12 depicts the 

network characteristics of five networks at the time of network selection. Simulation 

experiments include three different applications: voice, video and best-effort applications as 

discussed in the previous section. The utility values obtained for network attributes for the 

three applications are shown in Tables 13 - 15. 

4.2 Results and Discussion 

In this section, results of the proposed technique are presented and discussed. Fuzzy-AHP 

method is used for deriving weights for network attributes. Crisp weights are derived by 

using the proposed non-linear optimization methods as illustrated in section 3. Crisp weights 

for different applications are shown in Tables 7-9. Final scores are calculated with SAW, 

TOPSIS and MEW methods as explained in section 2. For analysis purpose, firstly, the scores 

are calculated without the use of utility functions, namely, Fuzzy-AHP SAW, Fuzzy-AHP 

TOPSIS, Fuzzy-AHP MEW and then all these methods are also used to calculate the final 

scores with the utility values of attributes, namely, Utility-based Fuzzy-AHP SAW, Utility-

based Fuzzy-AHP TOPSIS, and Utility based Fuzzy-AHP MEW. The proposed methods are 

also compared with WRMA TOPSIS (Yang and Tseng ,2013) and Chamodrakas et al. 



(2011). Network attributes’ weights for these two methods are taken directly from Yang and 

Tseng (2013). Utility values for Chamodrakas et al. (2011) are taken from Tables 13-15. 

Rankings of networks with these different MADM methods for three application classes are 

described below:  

(a) Voice 

For voice applications, bandwidth attribute is not as important as delay and jitter. The 

networks 𝑁1 and 𝑁4 are ranked higher than the other networks as they offer lesser delay and 

jitter as compared to other networks. The rankings of networks are in the order of 𝑁4 > 𝑁1 >

𝑁2 > 𝑁3 > 𝑁5 with both the Fuzzy-AHP SAW and Fuzzy-AHP TOPSIS methods as shown 

in Fig. 5. With Fuzzy-AHP MEW method, the network 𝑁1  has higher priority than 

network 𝑁4. But the difference between final scores of networks is greater and therefore is 

more susceptible to unnecessary handovers as compared with SAW and TOPSIS methods. 

When utility-based functions are applied, the difference between the final scores of networks 

has been reduced for each method. If two or more networks are fulfilling the QoS 

requirements the difference between their final scores is less as their utility values for that 

specific QoS attribute is same. Therefore, there is less number of handovers as compared with 

traditional MADM methods. The order of rankings of networks is same 𝑁4 > 𝑁1 > 𝑁2 >

𝑁3 > 𝑁5 for utility-based Fuzzy-AHP SAW and utility-based Fuzzy-AHP TOPSIS methods.  

In utility-based fuzzy-MEW method, network 𝑁5 is not considered as it has the utility value 

of zero for delay and jitter. So, the network having zero utility value of an important 

parameter like delay should be ignored. Also the score of network  𝑁3 is very comparatively 

less as compared with other networks with this method as its jitter attribute is not within the 

requirements of voice application. Therefore, utility-based Fuzzy-AHP MEW method is 

better as compared with utility-based Fuzzy-AHP SAW and utility-based Fuzzy-AHP 

TOPSIS methods which give comparatively higher score to networks 𝑁3 and 𝑁5 . Also, in 

comparison with WRMA TOPSIS and Chamodrakas et al. (2011) the utility based MEW 

method gives more appropriate ranking. In WRMA TOPSIS method, as utility values are not 

considered, there is a huge difference in final scores of networks. So, many unnecessary 

handovers may arise. In case of Chamodrakas et al. (2011), it considers 𝑁5  in the final 

selection process whose utility values for delay and jitter equal to zero. Therefore, we can 

conclude that utility-based Fuzzy-AHP MEW is the most appropriate method for network 

selection for voice application. 

(b) Video 



For video applications, bandwidth is as important parameter as delay and jitter whereas cost 

and error rate are not as important. Therefore, the rankings of networks are in the order of 

𝑁4 > 𝑁1 > 𝑁2 > 𝑁3 > 𝑁5  with all these Fuzzy-AP methods as shown in Fig. 6.  When 

utility-based functions are introduced, the ranking order of networks 𝑁1  and 𝑁2  gets 

interchanged as the utility value for bandwidth attribute for 𝑁2 is significantly greater than 𝑁1 

. The order of rankings of networks is 𝑁4 > 𝑁2 > 𝑁1 > 𝑁3 > 𝑁5 for utility-based Fuzzy-

AHP SAW and utility-based Fuzzy-AHP TOPSIS methods.  Also, the difference between the 

final scores of networks has been reduced. Therefore, there are less number of handovers as 

compared with traditional MADM methods. In utility-based fuzzy-MEW method, network 

𝑁5 is not considered as it has the utility value of zero for delay and jitter. So, the network 

having zero utility value of important parameters like delay and jitter should be ignored. Also 

the score of network 𝑁3 is comparatively less as compared with other networks with this 

method as its jitter attribute is not within the requirements of video application. Therefore, 

utility-based MEW method is better as compared with utility-based Fuzzy-AHP SAW and 

utility-based Fuzzy-AHP TOPSIS methods which give comparatively higher score to 

networks 𝑁3 and 𝑁5.  

In WRMA TOPSIS and Chamodrakas et al. (2011) the score of network  𝑁3 is considerably 

high and it can participate quite actively in the final network selection process. But as 

mentioned earlier, the utility value of the jitter attribute is very less. Therefore, final scores 

with utility based MEW method are more appropriate than these two methods. 

 

(c) Best Effort 

In the best-effort applications, the packets are to be transferred at a lower error rate over 

networks. Therefore, the ranking of network  𝑁1  is higher than the other networks. The 

ranking of networks is in the order of 𝑁1 > 𝑁4 > 𝑁3 > 𝑁2 > 𝑁5 with both the Fuzzy-AHP 

SAW and Fuzzy-AHP MEW methods as shown in Fig. 7. For Fuzzy-AHP TOPSIS method 

network 𝑁3 has higher priority over network 𝑁4. 𝑁1 has the highest priority as it offers least 

BER. When utility-based methods are applied, the ranking order of networks for all MADM 

methods becomes 𝑁1 > 𝑁3 > 𝑁4 > 𝑁2 > 𝑁5. All the considered networks are satisfying the 

requirements for best effort application.  Therefore, with the utility based MADM methods 

the difference between the final scores of networks has been reduced with the exception of 

TOPSIS method. Also, the difference between final scores of different networks is quite large 

in WRMA TOPSIS and Chamodrakas et al. (2011). Therefore, Utility-based Fuzzy-AHP 



SAW and utility-based Fuzzy-AHP Mew methods are appropriate for network selection for 

best- effort application. 

 

 If the utility of an attribute of a network is zero, the final score of that network 

becomes zero in MEW method. So, it does not consider that alternative network for selection. 

As discussed above in all the three applications, utility-based MEW method has given 

appropriate results than the other MADM methods.  

5. Conclusion 

This paper proposes a novel fuzzy-Analytic Hierarchy Process (AHP) based network 

selection in heterogeneous wireless networks. The Fuzzy-AHP method is used to determine 

the weights of the attributes. When extent analysis method is used to derive crisp weights 

from fuzzy comparison matrices, irrational zero weights are obtained. Therefore, a new non-

linear fuzzy optimization model for deriving crisp weights from fuzzy comparison matrices is 

proposed. The weights obtained from this model are more consistent than other methods. 

Utility functions are further used to obtain the actual utility value of each network attribute. 

From the results, it has been found that the utility based MEW method gives more 

appropriate final scores for each network with utility functions than the utility based SAW 

and TOPSIS methods. Also, with the utility-based MADM methods unnecessary handovers 

can be avoided as in comparison with traditional MADM methods.  

The main contributions of this research are as follows: 

1) This paper presents the disadvantages of extent analysis method for network selection 

problems. 

2) A new non-linear optimization model to derive crisp weights of the network attributes 

is presented. To the best of our knowledge, this paper is the first paper to derive crisp 

weights from fuzzy pairwise comparison matrices with non-linear fuzzy models for 

network selection problems.  

3) Consistency Index with this proposed model is better than the existing non-linear 

models. 

4) Parameterized utility functions are used to evaluate the utility values of network 

attributes and the results with the proposed utility based MADM methods are better 

than the traditional MADM methods. Also, it has been found that utility based MEW 



method is more appropriate than other MADM methods for network selection 

problems.     

 

The proposed utility based network selection technique makes the handover decisions more 

appropriately to avoid unnecessary handovers. Also, the presented fuzzy optimization model 

can derive optimal weights for fuzzy-AHP comparison matrices that can be used in different 

research areas like operation research, management, engineering applications etc., where 

various types of applied soft computing techniques are used.  

  

The main limitation of this work is that handover triggering and energy efficiency are not 

considered. In near future, efforts will be made to consider other parameters like energy 

efficiency and the velocity of the mobile node, etc., in the network selection process and 

handover  triggering mechanisms will also be included to achieve seamless handovers. Also, 

only TFNs are considered to represent the judgments. The scope of granular computing and 

trapezoidal fuzzy numbers can be explored for network selection in heterogeneous wireless 

networks. 
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Fig 1: Working of proposed network selection technique 
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Fig 2: Sigmoid function with values of a and b 



 

Fig 3: Monotonically increasing function with c= 10  

  



 

Fig 4: Linear decreasing function with c=30 

  



 

                                         Fig. 5: Final scores of networks for different Fuzzy –AHP MADM methods for voice application 
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Fig. 6: Final scores of networks for different Fuzzy –AHP MADM methods for video application 
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Fig. 7: Final scores of networks for different Fuzzy –AHP MADM methods for best-effort application 
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Table 1 Decision table in AHP 

Alternatives Criteria 

 𝐶1 𝐶2 𝐶3 ... 𝐶𝑛 

𝐴1 𝑚11 𝑚12 𝑚13  𝑚1𝑛 

𝐴2 𝑚21 𝑚22 𝑚23 ... 𝑚2𝑛 

... ... ... ... ... ... 

... ... ... ... ... ... 

𝐴𝑚 𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 ... 𝑚𝑚𝑛 

 

  



Table 2: Fuzzy judgment scores in Fuzzy-AHP (Wang et. al, 2007) 

Fuzzy judgments Fuzzy Scores 

About equal (1/2, 1, 2) 

About a times more important       (a-1, a, a+1) 

Between b and c times more 

important 
   (b, (b+c)/2, c) 

 

  



Table 3: Fuzzy Comparison matrix for voice application 

 Bandwidth Delay Jitter Error Rate Cost 

Bandwidth (1,1,1) (0.25,0.33,0.5) (0.33,0.4,1) (1,2,3) (0.25,.33,0.5) 

Delay (2,3,4) (1,1,1) (1,2,3) (4,5,6) (0.5,1,2) 

Jitter (2,2.5,3) (0.33,0.5,1) (1,1,1) (2,3,4) (0.33,0.5,1) 

Error Rate (0.33,0.05,1) (0.17, 0.2, 0.25) (0.25,0.33,0.05) (1,1,1) (0.17,0.2,0.25)) 

Cost (2,3,4) (0.5,1,2) (1,2,3) (4,5,6) (1,1,1) 

 

  



Table 4: Fuzzy Comparison matrix for video application 

 Bandwidth Delay Jitter Error Rate Cost 

Bandwidth (1,1,1) (0.33,0.5,1) (0.33,0.5,1) (2,3,4) (2,3,4) 

Delay (1,2,3) (1,1,1) (0.5,1,2) (3,4,5) (3,4,5) 

Jitter (1,2,3) (0.5,1,2) (1,1,1) (3,4,5) (3,4,5) 

Error Rate (0.25,0.33,0.5) (0.2,0.25,0.33) (0.2,0.25,0.33) (1,1,1) (0.5,1,2) 

Cost (0.25,0.33,0.5) (0.2,0.25,0.33) (0.2,0.25,0.33) (0.5,1,2) (1,1,1) 

 

  



Table 5: Fuzzy Comparison matrix for best-effort application 

 Bandwidth Delay Jitter Error Rate Cost 

Bandwidth (1,1,1) (3,4,5) (3,4,5) (0.2,0.25,0.33) (3,4,5) 

Delay (0.2,0.25,0.33) (1,1,1) (0.5,1,2) (0.13,0.14,0.17) (0.5,1,2) 

Jitter (0.2,0.25,0.33) (0.5,1,2) (1,1,1) (0.13,0.14,0.17) (0.5,1,2) 

Error Rate (3,4,5) (6,7,8) (6,7,8) (1,1,1) (6,7,8) 

Cost (0.2,0.25,0.33) (0.5,1,2) (0.5,1,2) (0.13,0.14,0.17) (1,1,1) 

 

  



Table 6: Crisp weights obtained by extent analysis method 

Application Bandwidth  Delay  Jitter BER Cost 

Voice 0.0691 0.3549 0.2211  0 0.3549 

Video    0.2580 0.3710 0.3710 0 0 

Best Effort 0.0065 0 0 0.9935 0 

 

  



Table 7: Crisp weights and consistency index for voice application 

Method Bandwidth Delay Jitter BER Cost 
Consistency 

Index (γ) 

Fuzzy optimization model (eq. 22) 0.0988 0.3035 0.2138 0.0614 0.3225 0.5106 

Proposed model (eq.25) 0.0921 0.3195 0.2087 0.0603 0.3194 0.6234 

 

 

 

Table 8: Crisp weights and consistency index for video application 

Method Bandwidth  Delay  Jitter BER Cost Consistency 

Index (γ) 

Fuzzy optimization model (eq. 22) 0.1555 0.3123 0.3263 0.0934 0.1125 0.1983 

Proposed model (eq.25) 0.1987 0.3260 0.3256 0.0747 0.0750 0.6948 

 

 

 

 

Table 9: Crisp weights and consistency index for best effort application 



Method Bandwidth Delay Jitter BER Cost 
Consistency 

Index (γ) 

Fuzzy optimization model (eq. 22) 0.1198 1050 0.0717 0.6255 0.0780 0.1558 

Proposed model (eq.25) 0.1757 0.0761 0.0804 0.5888 0.0790 0.4427 

 

  



Table 10: Requirements of network attributes for the three applications 

 Bandwidth Delay Jitter BER Cost 

Voice 32-64 Kbps 100-150ms 50-80ms <30 <50 

Video 512-5000Kbps 100-150ms 40-70ms <30 <50 

Best Effort >10kbps <20000ms <10000ms <30 <50 

 

  



Table 11: Utility functions for attributes for the three applications 

 Voice Video Streaming Best Effort 

Bandwidth Sigmoid function 𝑓(𝑥) 

a=0.25, b=48 (Chamodrakas and 

Martakos, 2011) 

Sigmoid function f(𝑥) 

a=0.003, b=2000  

(Chamodrakas and 

Martakos, 2011) 

Monotonically increasing 

function 𝑢(𝑥). c=10 

Delay Sigmoid function 𝑔(𝑥) 

a=0.1, b=112.5 (Chamodrakas 

and Martakos, 2011) 

Sigmoid function 𝑔(𝑥) 

a=0.1, b=112.5       

(Chamodrakas and 

Martakos, 2011) 

Linear decreasing 

function 𝑢(𝑥). c=20000 

Jitter Sigmoid function 𝑔(𝑥) 

a=0.185, b=65 

Sigmoid function 𝑔(𝑥) 

a=0.175, b=55 

Linear decreasing 

function 𝑢(𝑥). c=10000 

Error Rate Linear decreasing function 𝑢(𝑥). 

c=30 

Linear decreasing 

function 𝑢(𝑥). c=30 

Linear decreasing 

function 𝑢(𝑥). c=30 

Cost Linear decreasing function 𝑢(𝑥). 

c=50 

Linear decreasing 

function 𝑢(𝑥). c=50 

Linear decreasing 

function 𝑢(𝑥). c=50 

 

  



Table 12: Decision table for network selection problem 

 N1 N2 N3 N4 N5 

Bandwidth (kbps) 2000 5000 8000 11000 1000 

Delay (ms) 50 80 90 30 200 

Jitter (ms) 10 10 90 20 120 

Bit Error Rate (per 106 bits) 1 15 9 12 10 

Cost (paisa per bit) 10 20 30 6 30 

 

  



Table 13: Utility values of attributes for voice application 

 N1 N2 N3 N4 N5 

Bandwidth 1 1 1 1 1 

Delay 0.9981 0.9627 0.9047 0.9997 0 

Jitter 1 1 0.0097 0.9998 0 

BER 0.9667 0.5 0.7 0.6 0.6667 

Cost 0.8 0.6 0.4 0.88 0.4 

                 

  



Table 14: Utility values of attribute for video application 

 N1 N2 N3 N4 N5 

Bandwidth 0.5 0.9999 1 1 0.0474 

Delay 0.9981 0.9627 0.9047 0.9997 0 

Jitter 1 1 0.0022 0.9978 0 

BER 0.9667 0.5 0.7 0.6 0.6667 

Cost 0.8 0.6 0.4 0.88 0.4 

              

  



Table 15: Utility values of attribute for best-effort application          

 N1 N2 N3 N4 N5 

Bandwidth 0.9950 0.9980 0.9988 0.9991 0.9900 

Delay 0.9975 0.9960 0.9955 0.9985 0.9900 

Jitter 0.9990 0.9990 0.9910 0.9980 0.9880 

BER 0.9667 0.5 0.7 0.6 0.6667 

Cost 0.8 0.6 0.4 0.88 0.4 

 

 

 


