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i

Abstract

This thesis is about robust optimization, a class of mathematical optimization problems
which arise frequently in engineering applications, where unknown process parameters and
unpredictable external influences are present. Especially, if the uncertainty enters via a
nonlinear differential equation, the associated robust counterpart problems are challenging
to solve. The aim of this thesis is to develop computationally tractable formulations
together with efficient numerical algorithms for both: finite dimensional robust optimization
as well as robust optimal control problems.

The first part of the thesis concentrates on robust counterpart formulations which lead to
“min-max” or bilevel optimization problems. Here, the lower level maximization problem
must be solved globally in order to guarantee robustness with respect to constraints.
Concerning the upper level optimization problem, search routines for local minima are
required. We discuss special cases in which this type of bilevel problems can be solved
exactly as well as cases where suitable conservative approximation strategies have to be
applied in order to obtain numerically tractable formulations. One main contribution of this
thesis is the development of a tailored algorithm, the sequential convex bilevel programming
method, which exploits the particular structure of nonlinear min-max optimization problems.

The second part of the thesis concentrates on the robust optimization of nonlinear dynamic
systems. Here, the differential equation can be affected by both: unknown time-constant
parameters as well as time-varying uncertainties. We discuss set-theoretic methods for
uncertain optimal control problems which allow us to formulate robustness guarantees
with respect to state constraints. Algorithmic strategies are developed which solve the
corresponding robust optimal control problems in a conservative approximation. Moreover,
the methods are extended to open-loop controlled periodic systems, where additional
stability aspects have to be taken into account.

The third part is about the open-source optimal control software ACADO which is the basis
for all numerical results in this thesis. After explaining the main algorithmic concepts and
structure of this software, we elaborate on fast model predictive control implementations
for small scale dynamic system as well as on an inexact sequential quadratic programming
method for the optimization of large scale differential algebraic equations. Finally, the
performance of the algorithms in ACADO is tested with robust optimization and robust
optimal control problems which arise from various fields of engineering.
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Notation

Without recalling mathematical standard notation, we collect in the following list some
remarks on the syntax in this thesis, which might be less common in some fields of
mathematics and engineering:

• Symmetric Matrices: We use the notation Sn :=
{
M ∈ Rn×n | M = MT

}
to denote the set of symmetric matrices. Similarly, Sn+ denotes set of symmetric
matrices in Rn×n, which are positive semi-definite, while Sn++ denotes the set of
positive definite n× n matrices.

• Inequalities: Besides the standard inequalities for scalars, we also write a ≤ b

(or equivalently b ≥ a), if a, b ∈ Rn are vectors, which satisfy ai ≤ bi for all
components i ∈ {1, . . . , n} . The corresponding strict versions “<” and “>” are
analogously defined. For matrix inequalities, we always use the symbols � and � ,
i.e., we write A � B (or equivalently B � A ) for symmetric matrices A,B ∈ Sn ,
if B −A ∈ Sn+ , and A ≺ B (or equivalently B � A ), if B −A ∈ Sn++ .

• Sets and Operations with Sets: For any set X, we use the syntax Π(X) to
denote the associated power set, i.e., the set of all subsets of X including the empty
set. Moreover, for two sets X,Y ⊆ Rn, we use the notation

X + Y := {x+ y ∈ Rn | x ∈ X and y ∈ Y }

to denote their Minkowski sum. Similarly, the definition of expressions like ∑m
i=1Xi

for a set valued sequence X1, . . . , Xm ⊆ Rn is throughout this thesis always based
on the Minkowski sum.

• Ellipsoids: There are many ways to notate ellipsoids. In this thesis, we will use the
notation

E(Q, q) :=
{
q +Q

1
2 v
∣∣∣ ∃v ∈ Rn : vT v ≤ 1

}
⊆ Rn .

xi
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xii CONTENTS

to denote an ellipsoid with center q ∈ Rn and positive-semi definite matrix Q ∈ Sn+.
Here, we will also use the short-hand E(Q) := E(Q, 0) for centered ellipsoids.
Note that the above definition is independent of the choice of the square-root Q 1

2

of the positive-semi definite matrix Q.
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Chapter 1

Introduction

Nowadays, most of the processes which arise in engineering and industrial applications are
optimized with respect to one or the other criterion. For example, we want to minimize
time, we want to save energy and reduce emissions, or – especially in industrial production
processes – we want to minimize costs while meeting given criteria like specifications on the
quality of a product. In many of such cases, a blind application of optimization tools yields
extreme solutions, which drive a process to its bounds without taking imperfections, model
errors, or external uncertainties into account. As a consequence, a safe operation cannot
be ensured and important constraints might be violated when unforeseen disturbances
arise.

The aspect of safety in dynamic processes is especially important when human beings
are involved in it and when it is crucial that hard constraints on the state of the system
have to be satisfied for a whole ensemble of worst case scenarios. Here, we might think of
cars, trains, airplanes, or other transportation technologies for which we might optimize
the traveling time, robots which interact with humans, chemical processes which involve
dangerous ingredients, or even nuclear power plants. In this context, the problem of
guaranteeing safety is often two-sided: first, we do not have models which predict the
behavior of the dynamic system with sufficient accuracy. In a typical situation, the model
for the process of our interest is only validated by a finite number of noise-affected
experiments and consequently the identified system parameters cannot be expected to
be exactly known. And second, there might be external influences or disturbances –
for example wind turbulences, temperature variations, structural imperfections, ground
oscillations, weather changes etc. – which can usually not be predicted accurately, but

1
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2 INTRODUCTION

which might affect the corresponding dynamic processes in an unfortunate way. Thus,
there arises the question of how we can optimize systems in such a way that we can still
guarantee that given safety constraints are met for a reasonably chosen set of possible
scenarios.

In this introduction, we discuss how optimization problems can mathematically be
formulated, if we want to take uncertainties or disturbances into account. In this context,
we should be aware of the fact that mathematical formulations of real-word phenomena
are usually based on a set of assumptions or physical principles which appear natural
and can approximately be validated by experiments. In the typical situation of robust
optimization, we have to rely on assumptions on the uncertainty under which we can
provide safety guarantees. In other words, a robustly optimized process can be just as
unsafe as a nominally optimized one, if the “real” uncertainty does simply not satisfy
our assumptions. Thus, the appropriate mathematical modeling of the uncertainties and
disturbances can be as important as the modeling of the dynamic process itself.

We start with a general formulation of robust optimization problems, which is explained
in Section 1.1. These consideration are extended for uncertain optimal control problems
in Section 1.2, while Section 1.3 provides a literature overview. Section 1.4 outlines the
structure and contribution of the thesis.

1.1 Formulation of Robust Optimization Problems

A standard optimization problem consists typically of a given continuous objective function
F0 : Rnx × Rnw → R and a compact set F ⊆ Rnx of feasible points. Here, our aim is to
minimize the function F0 over the variables which are in the set F . In other words, we
are interested in an optimization problem of the form

min
x∈F

F0(x,w) .

In this notation, F0 can depend on a parameter or data vector w ∈ Rnw . If we know
this parameter w exactly, there is so far nothing special about this optimization problem.
However, if the parameter w is chosen by nature or by someone else who is playing against
us, we might be in the situation that we do not know the exact value of w. Rather, we
assume that our information about w is that this parameter is in a given compact set
W ⊆ Rnw . In order to take this knowledge about the uncertainty w into account, we
follow the classical concept of robust counterpart formulations, which has been established
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FORMULATION OF ROBUST OPTIMIZATION PROBLEMS 3

by Ben-Tal and Nemirovski [17, 19]. Here, the assumption is that we want to minimize
the worst possible value of the function F0, i.e., we are interested in a min-max problem
of the form

min
x∈F

max
w∈W

F0(x,w) .

This problem formulation can intuitively be motivated by interpreting the variable w as
the optimization variable of an adverse player, who is trying to maximize the function F0,
while we are - as opposed to our adverse player - trying to minimize F0. For most of the
applications, we may assume that we have an explicit model for the set F , which is given
in form of continuous constraint functions F1, . . . , Fm : Rnx × Rnw → R, such that the
set F can be written as:

F =

x ∈ Rnx

∣∣∣∣∣∣∣∣∣
max
w∈W

F1(x,w) ≤ 0
...

max
w∈W

Fm(x,w) ≤ 0

 .

Similar to the maximization of the objective value, we assume here that our counterpart
player always chooses the worst possible value for the functions F1, . . . , Fm.

As an alternative to the above notation, we can also require the constraint functions
Fi to be negative for all possible values of the uncertainty w ∈ W and for all indices
i ∈ {1, . . . ,m}. In other words, we can equivalently write the set F in the form

F =

x ∈ Rnx

∣∣∣∣∣∣∣∣
∀w ∈W : F1(x,w) ≤ 0

...
∀w ∈W : Fm(x,w) ≤ 0

 .

In this notation, we do not have to solve global maximization problems to check whether
a point x is feasible, but we have in general an infinite number of constraints. For this
reason, robust optimization problems are sometimes also called semi-infinite optimization
problems expressing that we have on the one hand infinitely many constraints, but on the
other hand at least only a finite number of optimization variables.

The semi-infinite optimization perspective has sometimes advantages. For example, if we
want to extend our notation to vector or matrix valued functions Fi in combination with
generalized inequalities – which arise for example in the context of conic constraints – the
semi-infinite point of view transfers in a natural way. However, in this thesis we will mainly
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4 INTRODUCTION

focus on scalar valued functions Fi and the standard ordering “≤” in R, for which the
semi-infinite optimization perspective and the min-max formulation are entirely equivalent.

At this point, we should mention that the above way of formulating robust optimization
problems is not the only option. We could also regard the case that w is a random variable
with a given probability distribution. Especially, in applications where the uncertainty w is
of a stochastic nature, it makes sense to regard chance constraints, i.e., constraints which
have to be satisfied with a certain probability only. This can be important in applications,
where the min-max formulation is too restrictive. However, the main focus of this thesis
are the above outlined worst case formulations. Concerning the class of chance constrained
optimization problems we only provide short remarks at one or the other place as well as
a literature overview within Section 1.3.

1.2 Robust Optimal Control Problems

Optimal control problems are a special class of optimization problems which focus on
the optimization of dynamic systems. A fairly general formulation of a nonlinear optimal
control problem reads as follows:

inf
x(·),u(·),p,Te

m( p, Te, x(Te) )

s.t.


x(0) = x0

ẋ(τ) = f(τ, u(τ), p, x(τ), w(τ))

0 ≥ h(τ, u(τ), p, x(τ), w(τ)) for all τ ∈ [0, Te] .

(1.2.1)

Here, Te ∈ R++ denotes the duration of the dynamic process, x : [0, Te] → Rnx is a
state vector, u : [0, Te]→ Rnu a time varying control input, and p ∈ Rnp a time constant
parameter. Note that in contrast to the standard formulation of finite dimensional
optimization problems, the above formulation of an optimal control problem requires the
introduction of the function valued optimization variables x and u.

Besides the optimization variables x, u, p, and Te, there are three model functions, denoted
by f, h, and m, which are typically introduced within standard optimal control problem
formulations: first, the possibly nonlinear right-hand side function or dynamic process
model f : R×Rnu×Rnp×Rnx×Rnw → Rnx is needed to define the differential equation
which has to be satisfied by the differential state x. Note that this right-hand side function
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ROBUST OPTIMAL CONTROL PROBLEMS 5

may in its first argument explicitly depend on the time τ . Besides the dependence of
f on x, the dynamic equation can be influenced by the control input u, the parameter
p, and an external input w. From a pure optimization perspective, the optimal control
problem is simply defined to be infeasible whenever the differential equation does not
admit a solution on the interval [0, Te]. However, within this thesis, we will typically
require suitable Lipschitz conditions on the function f , such that we can rely on the unique
existence of solutions of the associated differential equation.

Second, the function h : R× Rnu × Rnp × Rnx × Rnw → Rnh can be used to formulate
constraints on the states, controls, and parameters. And third, the objective function
m : Rnp × R× Rnx → R is in our formulation a Mayer term, which is evaluated at the
end of the time horizon. Here, we note that additional integral terms (Lagrange terms) in
the objective can always be reformulated into a Mayer term by introducing an additional
differential state as a slack variable.

Similar to the considerations from the previous Section 1.1, where finite dimensional robust
optimization problems have been introduced, we allow the optimal control problem to
depend on a possibly time-varying input function w : [0, Te]→ Rnw and a vector x0 ∈ Rnx .
If these two variables are exactly known and given, problem (1.2.1) is a standard optimal
control problem. However, this thesis is about the case that the exact values of w and x
are unknown. Here, we can either interpret w as a model error or as an external disturbance
which can influence the behavior of the dynamic system, while x0 is the initial value for
the state. Our only knowledge about the input w and the initial value x0 is of the form
(w, x0) ∈ W, i.e., we assume that we have a given bounded set W for which we know
that it contains the pair (w, x0).

The idea of robust counterpart or min-max formulations transfers conceptionally also to
optimal control problems. In order to outline this aspect, we assume for a moment that
the solution of the differential equation uniquely exists, i.e., we assume that the state x(t)
can at any time t be interpreted as a function of the inputs x0, u, p, and w, such that we
may formally write

∀t ∈ [0, Te] : x(t) = ξ[t, x0, u(·), p, w(·)] ,

where the functional ξ can numerically be evaluated by integrating the differential
equation on the interval [0, t] using the corresponding arguments x0, u, p, and w as
initial value, control input, and disturbance input, respectively. With this notation, the
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6 INTRODUCTION

robust counterpart problem of the optimal control problem (1.2.1) can be written as

inf
x(·),u(·),p,Te

sup
(w(·),x0)∈W

∫ Te

0
m( p, Te, ξ[Te, x0, u(·), p, w(·)] )

s.t. sup
(w(·),x0)∈W

hi(τ, u(τ), p, ξ[τ, x0, u(·), p, w(·)], w(τ)) ≤ 0 ,

where the constraints have to be required for all times τ ∈ [0, Te] and all components
i ∈ {1, . . . , nh} of the constraint function h. If we would discretize the optimization
variables as well as the constraint functions in the above inf-sup problem, we can in
principle regard the corresponding discretized problem as a robust optimization problem
with a finite number of variables such that the problem is reduced to the formulation from
Section 1.1. However, in later chapters of this thesis, we shall see that robust optimal
control problems have a particular structure which can be exploited by the formulation
techniques and algorithms. Thus, we will usually treat this class of robust optimization
problems separately.

1.3 Existing Approaches for Robust Optimization

Within the last decades, robust optimization has been a focus within many research
communities starting with the field of control, convex optimization, mathematical
programming, or even economics, and many fields of engineering science. Basically,
whenever an optimization problem is formulated, the question arises whether really all
parameters and inputs are exactly known and what changes if they are not. In this sense,
it is not surprising that many researchers were and are attracted by the challenges of
robust optimization.

Stochastic Programming

Starting with the work of Dantzig [63] on uncertain linear programming in the 1950s many
articles in the field of stochastic programming occurred. The notion of chance constrained
programming has been introduced by Charnes, Cooper, and Symonds in [55], Miller and
Wagner [169], as well as by Prékopa [193]. Here, the main idea is to regard the uncertain
parameter in the optimization problem as a random variable for which a given probability
distribution is assumed. In the corresponding chance constrained formulation of a robust
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EXISTING APPROACHES FOR ROBUST OPTIMIZATION 7

optimization problem, the probability of a constraint violation is asked to be below a
given confidence probability. For a more recent article on this topic and the relations to
convex optimization, we refer to the work of Nemirovski and Shapiro [177, 178], which
also provide a recommendable overview about this research field.

Classical Robust Control Theory

The historic origins of the rigorous worst-case robust optimization formulations can be
found in the field of robust control. Here, the main motivation was to overcome the
limitations of Kalman’s linear quadratic control theory [34, 137], as LQG controllers were
found to be non-robust with respect to uncertainties: Doyle published in [81] his classical
article with the title “Guaranteed margins for LQG regulators”, followed by the rather short
abstract: “There are none.” The development of the robust control theory was mainly
influenced by Glover and Schweppe [102, 209], who analyzed linear control systems with
set constrained disturbances, as well as by Zames [241], who was significantly contributing
to the development of H∞-control. For a more general overview on the achievements
in classical robust control theory, including H∞-control, we refer to the text books [83],
[217] and [244] – as well as the references therein.

Convex Robust Optimization

An early article on robustness on convex optimization is by Soyster [219]. However, the
main development phase of the robust counterpart methodology in convex optimization
must be dated in the late 1990s. This phase was initialized and significantly driven
by the work of Ben-Tal and Nemirovski [18, 19, 20] and also independently by the
work of El-Ghaoui and Lebret [85]. These approaches are based on convex optimization
techniques [46] and make intensive use of the concept of duality in convex programming,
which helps us to transform an important class of min-max optimization problems into
tractable convex optimization problems. Here, a commonly proposed assumption is that
the uncertainty set is ellipsoidal (or an intersection of ellipsoidal sets), which is in many
cases the key for working out robust counterpart formulations. For example, a linear
program (LP) with uncertain data can be formulated as a second order cone program
(SOCP), or an uncertain SOCP can – at least if the uncertainty set has a particularly
structured ellipsoidal format – again be written as an SOCP. However, especially in the
control context, polytopic uncertainty sets are also a common choice [14, 28]. Note that
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8 INTRODUCTION

the field of research addressing robust convex optimization problems has expanded during
the last years and is still in progress, as reported in [16, 22]. Although these developments
tend more and more towards approximation techniques, where the robust counterpart
problem is replaced by more tractable formulations, they also cover an increasing amount of
applications. For an extensive overview on robust optimization from the convex perspective,
we refer to the recent text book by Ben-Tal, El-Ghaoui, and Nemirovski [17]. Finally, we
refer to the work of Scherer [206] and the references therein, as well as to the work of
Löfberg [156], where (modern) convex optimization techniques, especially linear matrix
inequalities, in the context of robust control are exploited.

Nonconvex Robust Optimization

Looking at the non-convex case we can find some approaches in literature [71, 123,
133, 174] which suggest approximation techniques based on the assumption that w
lies in a “small” uncertainty set W or equivalently that the curvatures of the objective
function F0 as well as the constraint functions F1, . . . , Fm with respect to w are bounded
by given constants such that the dependence of F0, F1, . . . , Fm can be described by a
Taylor expansion where the second order term is over-estimated such that a conservative
approximation is obtained. This linearization allows us in some cases to compute the
maxima in an explicit way. As in the convex case, these approaches usually assume that
the uncertainty sets are ellipsoidal (while the ellipsoids might however be nonlinearly
parameterized in x) such that the sub maximization problems can easily be eliminated
while the conservatively robustified minimization problem is solved with existing NLP
algorithms. Note that Nagy and Braatz [174, 175] have established this approach. They
also considered the case of more general polynomial chaos expansions, i.e., the case where
higher order Taylor expansions with respect to the unknowns have to be regarded. However,
in practice it is often already quite expensive to compute linearizations of the functions
F0, F1, . . . , Fm with respect to the uncertainty - especially if we think of optimal control
problems where such an evaluation requires us to solve nonlinear differential equations
along with their associated variational differential equations. This cost might increase
dramatically if higher order expansions have to be computed while the polynomial sub
maximization problems can themselves only approximately be solved which requires again a
level of conservatism. However, for the important special case that the constraint functions
are polynomials in w, while the dimension nw is small, there exists efficient robustification
techniques which are based on positive polynomials and LMI-reformulations for which we

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



EXISTING APPROACHES FOR ROBUST OPTIMIZATION 9

refer to the work of Lasserre [149], and the references therein, but also to the work of
Parillo [184].

For the case that polynomial approximations of the problem functions with respect to the
uncertainties are not acceptable, the completely nonlinear robust optimization problem
must be considered. This completely nonlinear case has been studied in the mathematical
literature in the context of semi-infinite programming. A recommendable overview article
on this topic is by Hettich and Kortanek [119]. As mentioned above, the term “semi-
infinite” arises from the observation that the constraints of an uncertainty have to be
satisfied for all possible realizations of the variables w in the given uncertainty set W (x),
i.e., an infinite number of constraints must be regarded. Here, the problems in which the
set W may depend on x are usually called generalized semi-infinite programming (GSIP)
problems while the name semi-infinite programming (SIP) is reserved for the case that the
uncertainty set W is constant. Within the last decades the growing interest in semi-infinite
and generalized semi-infinite optimization yielded many results about the geometry of
the feasible set, for which we refer to the work of Jongen [135], Rückmann [203], and
Stein [220]. Moreover, first and second order optimality conditions for SIP and GSIP
problems have been studied intensively [120, 135, 236]. However, when it comes to
numerical algorithms, semi-infinite optimization problems turn out to be in their general
form rather expensive to solve. Some authors have discussed discretization strategies
for the uncertainty set in order to replace the infinite number of constraint by a finite
approximation [119, 225, 226]. Although this approach works acceptably for very small
dimensions nw, the curse of dimensionality hurts for nw � 1 such that discretization
strategies are in this case rather conceptual. Note that the situation is very different
if additional concavity assumptions are available. Indeed, as semi-infinite optimization
problems can under mild assumptions [221] be regarded as a Stackelberg game [214],
the lower level maximization problems can - in the case of concavity - equivalently be
replaced by their first order optimality conditions, which leads to a mathematical program
with complementarity constraints (MPCC). In this context, we also note that semi-infinite
optimization problems can be regarded as a special bilevel optimization problem [13].
However, as we shall see this in this thesis, semi-infinite programming problems should not
be treated as if they were a general bilevel optimization problem as important structure is
lost otherwise.

Being at this point, semi-infinite optimization problems give rise to convexification methods
with the aim to equivalently replace or to conservatively approximate the lower level
maximization problems with a concave optimization problem. As discussed above, one way
to obtain a convexification is linearization. However, in the field of global optimization
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10 INTRODUCTION

more general Lagrangian underestimation (or, for maximization problems, overestimation)
techniques are a well-known tool [212, 213, 231] for convexification which is often used
as a starting point for the development of branch-and-bound algorithms. In the context
of generalized semi-infinite programming such a concave overestimation technique has
been suggested by Floudas and Stein [100] to deal with the problem of finding the global
solution of the lower level maximization problems discussing the case where the uncertainty
is assumed to be in a given one-dimensional interval. The corresponding technique is
called α-relaxation and works in principle also for uncertainties with dimension nw > 1
which are bounded by a box. For nw � 1 the α-relaxation can be used as a conservative
approximation while the authors in [100] suggest for the case of small nw to combine this
α-overestimation with a branch-and-bound technique (α-BB method) which converges to
the exact solution.

Classical Optimal Control Theory

Concerning the field of optimization in (open-loop) control it should be mentioned first that
there exists a huge amount of articles on general nonlinear optimal control problems. In
this thesis we will not provide an overview of all of them, but discuss some selected articles
which had a significant influence. Early articles on optimal control are from the 1960s by
Pontryagin [189] as well as by Bryson and Ho [49, 50], who analyzed optimality conditions
for optimal control problems. The work of Pontryagin has lead to the so called indirect
approach, which is based on the concept “first optimize, then discretize”, i.e., we first
apply Pontryagin’s optimality principle and then we discretize the corresponding continuous
time constrained boundary value problem in order to apply numerical techniques. However,
modern optimal control techniques are typically based on direct methods, which have
for example been introduced by Sargent and Sullivan [204]. In contrast to the indirect
methods, the direct approaches discretize the dynamic system first approximating the
continuous time optimal control problem with a discrete, finite dimensional nonlinear
programming problem which can then be solved numerically. Thus, the concept of direct
methods can be summarized as “first discretize, then optimize”. Modern optimal control
software is usually based on direct methods. Here, two main approaches exist: the first
approach is based on direct collocation, for which we refer to the work of Cuthrell and
Biegler [29, 30, 62]. And the second approach is based on single- or multiple shooting
methods, for which we refer to the work of Bock and Plitt [37, 38, 187] as well as
Bock and Leineweber [40, 150]. For an overview text on practical methods in optimal
control, the book by Betts [26] might also be helpful. Note that there exist many software
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EXISTING APPROACHES FOR ROBUST OPTIMIZATION 11

implementations of standard algorithms for nonlinear optimal control problems, for which
we refer at this point only to [125, 152, 232]. However, in Appendix 7, in particular within
Section 7.1, we provide a complete overview of existing optimal control tools, including
an overview of recent software developments.

Robust Open-Loop Optimal Control

Let us now proceed with a review of existing approaches on robust optimal control, i.e., the
robust optimization of dynamic systems. In order to avoid confusion at this point, we should
clearly point out that, we have to distinguish two situations which are both contained in the
name “robust control”: the first case is based on the assumptions that we can only control
the system in open-loop mode, where we assume that we do not have any possibility to
react to disturbances once the process is started. While, in the second case, we know that
we will have measurements such that we can react to future disturbances online. Starting
with the open-loop case there are some approaches available [71, 174, 175], which have
been applied to nonlinear dynamic system, but are rather based on heuristic than providing
mathematical robustness guarantees. In contrast, for robust open-loop control of linear
dynamic systems more approaches exist. In this context, we highlight once more the work
of Schweppe [209]. Moreover, Kurzhanski, Valyi, and Varaiya [144, 145, 146] contributed
significantly with their analysis of ellipsoidal methods for linear dynamic systems. In
addition, most of the approaches for the robust optimization of closed loop controlled
systems transfer naturally also to the robust optimization of open-loop controlled systems.

Note that an important sub-problem of robust optimal control is to analyze the influence
or propagation of uncertainty in dynamic systems. This type of analysis is also known
under the name reachability analysis for dynamic systems as for example elaborated by
Kurzhanski and Varaiya [146] or Lygeros, Tomlin, and Sastry [164]. In this context, we
can find mature literature on set theoretic methods including Aubin’s viability theory [12]
and Isaacs’ differential games [134]. Concerning modern numerical techniques for the
computation of reachable sets with high numerical precision we refer to the work of
Mitchell, Bayen, and Tomlin [170] and the references therin, where the computational
techniques are inspired from the field of partial differential equations. Here, the main idea
is to analyze viscosity solutions of Hamilton-Jacobi-Isaacs equations [86].
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Periodic Systems and Stability Optimization

Periodic optimal control problems are a special class of optimization problems for dynamic
systems which are considered on an infinite time-horizon assuming that we are interested in
periodic trajectories. For these periodic systems, we are besides the robustness with respect
to constraints also interested in the question whether the system is stable. Starting with
Lyapunov’s original work [163] which appeared at the beginning of the 20th century, the
question of the existence and stability of periodic orbits has lead to many contributions in
this field. For example, at the end of the 20th century, Matthieu and Hill have analyzed an
interesting class of differential equations, the Matthieu-Hill differential equations, for which
it can be proven that non-trivial open-loop stable periodic orbits exist [238] and which
can be seen as an important prototype class of problems for which nontrivial open-loop
stable orbits can be observed.

In general, it is extremely difficult to analyze the periodic orbits of a nonlinear dynamic
system. For example Hilbert’s 16th problem (published in 1900) is asking for the number
and configuration of the periodic limit cycles of a general polynomial vector field in the
plane. In fact, this problem is up to now still unsolved [155] and must be considered as
one of the hardest problems ever posed in mathematics. This illustrates how difficult
the analysis of such periodic cycles can be – and here we talk about a dynamic system
with two differential states only. On the other hand, in practical applications, we have
often at least a rough idea or physical intuition of when and where periodic cycles can
be expected. Here, we can think of periodically driven spring-damper systems, periodic
thermodynamic Carnot processes, bicycles, humanoid and walking robots, controllable
kites, many periodically operating power generating devices, etc. Thus the question how
to find and optimize the stability of periodic orbits numerically is highly relevant and, of
course, this question has also been addressed by many authors.

Starting with the work of Kalman [138] and Bittanti [34] periodic Lyapunov and Ricatti
equations became an important field of research for analyzing the stability of linear periodic
systems. Some of the existing modern robust stability optimization techniques are based
on the optimization of the so called pseudo-spectral abscissa. In this context we refer to
the work of Burke, Lewis, Overton, and Henrion [53, 52] as well as to the work of Trefethen
and Embree [228]. In these approaches non-smooth (but derivative based) optimization
algorithms are developed. Similar approaches have been proposed in [229] and [78], where
a smoothed version of the spectral abscissa is optimized such that existing derivative based,
local optimal control techniques can be employed. For interesting applications of open-loop
stability optimization in the field of robotics we refer to the work of Mombaur [171].
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CONTRIBUTION OF THE THESIS AND OVERVIEW 13

Robust Closed-Loop Control

From a nonlinear optimization perspective, the difference between open-loop and closed-
loop controlled systems is not significant, as we may for example assume a linear or
affine parameterization of the control law such that the closed loop problem can in
principle be cast as a robust open-loop optimal control problem. However, the resulting
robust optimization problems are typically non-convex – even if the system is jointly
affine in the state and the control input. Such affine feedback parameterization have
for example been analyzed by Ben-Tal and Nemirovski [17] in the context of so called
affinely adjustable robust counterparts. For the optimization of linear feedback laws, we
also refer to approaches of Apkarian and Noll [9] as well as to [129]. In this context,
it should also be noted that a linear feedback parameterization can be sub-optimal –
especially if control constraints are present. Complementing the classical robust control
theory, which has already been reviewed above, most of the modern approaches on
robust closed-loop control can be found in the model predictive control theory. In this
context, we refer to the extensive research in this field, most prominently driven by the
fundamental work of Rawlings [197], the min-max model predictive control techniques of
Kerrigan and Maciejowski [139, 140], the affine disturbance-feedback parameterization
approach by Kerrigan, Goulart, and Maciejowski [105], as well as the work of Langson and
Chryssochoos [147], Mayne [167], and Rakovic [195, 194] on tube based model predictive
control, a technique, which has originally been pioneered by Bertsekas and Rhodes [25, 24].
These approaches are typically based on set propagation techniques, where usually exact
state feedback as well as constraints on both the disturbances and the controls are given.
Moreover, there exist min-max model predictive control schemes based on robust dynamic
programming, which have been developed my Björnberg and Diehl [70]. For similar
approximate dynamic programming strategies in the context of stochastic control we refer
to the work of Wang and Boyd [235]. Finally, for robust control techniques based on
invariant sets, we refer to work of Blanchini [35] and Kolmanovski and Gilbert [142], as
well as to a very recommendable book on set theoretic methods in control by Blanchini
and Miani [36].

1.4 Contribution of the Thesis and Overview

This thesis is divided into three parts, named: Robust Optimization, Robust Optimal
Control, and Software & Applications.
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Outline of Part I: Robust Optimization

The goal of Part I, Robust Optimization, is to develop a consistent framework for
the formulation, tractable approximation, and numerical solution of nonlinear min-max
problems, which arise in the context of general robust optimization problems. The
contribution is splitted into three chapters which are based on each other:

• Chapter 2 is about selected, for the most part existing results in convex robust
optimization. This chapter is not designed to be encyclopedic, but mainly to recall
the main concepts and calculus in convex robust optimization which are needed
in order to understand the contributions of this thesis. It introduces the concept
of Lagrangian duality, including a review of the S-procedure, which is frequently
used to reformulate or approximate min-max problems with tractable standard
minimization problems. Moreover, ellipsoidal based set approximation strategies are
discussed which are in later chapters employed for the robust optimization of dynamic
systems. Although the results in this chapter are not new, they are presented from
a perspective which cannot be found in existing text books on convex or robust
optimization. In addition, some of the examples and derivations are original ideas of
this thesis.

• Chapter 3 is about the formulation and approximation of non-convex robust
optimization problems. Here, a Lagrangian overestimation technique is developed,
which is needed to obtain tractable, lower level convex approximations of nonlinear
min-max optimization problems. We illustrate this approximation technique for
robust counterpart problems with examples, prove that the presented strategy is
superior to existing Taylor expansion based approximation methods, and discuss
special cases in which this approximation is exact. Moreover, first order necessary
and second order sufficient conditions for general semi-infinite programming problems
are reviewed. In this context, we point out several structural properties of min-
max problems and the relation to mathematical programs with complementarity
constraints. The corresponding technical results are the basis of the sequential
convex bilevel programming algorithm.

• Chapter 4 is about numerical algorithms for nonlinear robust optimization problems.
We first discuss the advantages and disadvantages of applying existing sequential
quadratic programming algorithms to nonlinear min-max optimization problems.
The main part of this chapter is about a sequential convex bilevel programming
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CONTRIBUTION OF THE THESIS AND OVERVIEW 15

algorithm which exploits the structure of nonlinear min-max problems more efficiently
than existing techniques. This is one of the main contributions of this thesis. We
motivate the algorithm and discuss implementation details as well as local and global
convergence results. The algorithm is also applied to a numerical test example.

Outline of Part II: Robust Optimal Control

The goal of Part II, Robust Optimal Control, is to review and extend set theoretic methods
which allow first to assess and compute the influence of uncertainty in dynamic systems,
and second, to formulate and solve optimal control problems taking the uncertainty into
account. Here periodic systems and stability optimization problems are regarded, too.

• Chapter 5 is about uncertainty propagation in dynamic systems. After discussing
several options to model uncertainty sets for possibly time-varying unknown inputs
and time constant parameters in nonlinear dynamic systems, we introduce the
notation of robust positive invariant tubes. The proposed computational methods
for approximating the tubes, in which the state of an uncertain dynamic system is
known to be, are based on parameterized ellipsoids. In this context, we first
review and extend existing ellipsoidal methods for the computation of robust
positive invariant tubes for uncertain linear dynamic systems. However, one main
contribution of this chapter is that we also generalize these computational techniques
for nonlinear dynamic systems aiming at numerically tractable ways for approximating
the propagation of uncertainty in a conservative way.

• Chapter 6 is about robust optimization of open-loop controlled dynamic systems, one
of the core topics and highlights of this thesis. Here, we discuss how to formulate
robust nonlinear optimal control problems and how to solve them in a conservative
approximation. The corresponding techniques are applied to a robust optimal control
problem for a nonlinear jacketed tubular reactor. Inside this reactor a highly nonlinear
and uncertain exothermic chemical reaction takes place while there are hard safety
constraints on the temperature which must be satisfied for all possible scenarios.
Moreover, we extend our framework for periodic systems, too, where additional open-
loop stability requirements have to be met. The corresponding stability optimization
techniques are demonstrated at an open-loop controlled inverted spring pendulum,
which is stabilized without needing any feedback.
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16 INTRODUCTION

Outline of Part III: Software & Applications

The goal of Part III, Software & Applications, is to explain the concept of the optimal
control software ACADO Toolkit which is the basis for all the numerical computations in
this thesis. Here, we first provide an overview of the toolkit in general and then elaborate
on three main algorithmic features: ultra-fast nonlinear model predictive control algorithms
for small scale systems, efficient exploitation of structure and automatic differentiation for
the optimization of large scale systems comprising differential algebraic equations, and
efficient robust optimal control formulations and algorithms.

• Chapter 7 is about the open-source software ACADO, which has been developed as part
of a joint development effort in collaboration with my colleague Hans Joachim Ferreau.
In ACADO Toolkit direct methods for optimal control, in particular multiple-shooting
based sequential quadratic programming algorithms, are implemented. In this context,
we highlight in particular ACADO’s unique capability to deal with symbolic expressions
in optimal control problems, which allows us to use automatic differentiation, code
export, and automatic structure detection. Note that this chapter has been accepted
as a journal publication [131].

• Chapter 8 is about an extension of ACADO, which enables automatic code generation
for model predictive control algorithms. The algorithm itself is based on a real-time
Gauss-Newton method which is designed for fast nonlinear model predictive control
algorithms. The main contribution of this tool is its efficiency: we demonstrate
that for a nonlinear dynamic systems with four states and a control horizon of ten
samples, sampling times of much less than a millisecond are possible. Note that
this chapter has been accepted for publication and will appear in Automatica [132].

• Chapter 9 is about a quadratically convergent inexact SQP method which has
been designed for optimal control problems which comprise differential algebraic
equations (DAEs). While the code export techniques from Chapter 8 illustrate
how to implement fast algorithms for small-scale systems, the tailored inexact SQP
algorithm is designed for large scale systems with many algebraic states. The
corresponding algorithm is implemented in ACADO and we demonstrate its efficiency
by optimizing a distillation column with 82 differential and 122 algebraic states. The
chapter is based on a journal publication which is currently under review [128].

• Chapter 10 is about an application of an approximate robust optimization technique,
which is designed to robustly optimize periodic stationary states of dynamic systems.
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CONTRIBUTION OF THE THESIS AND OVERVIEW 17

Here, the application is a periodic biochemical process with uncertain system
parameters. The algorithm itself is based on adjoint differentiation techniques, which
are especially efficient if the dynamic system is affected by many uncertainties while
only a few constraints have to be satisfied in a robust way. Note that this chapter
has successfully been published in [133].

Note that the chapters in Part III are all composed from publications which have already
been accepted or are currently under review as outlined above. In addition, large parts of
the results in Chapter 5 and 6 have appeared in [124, 125, 129], while the contributions
from Chapters 3 and 4 are submitted and currently under review [127]. Finally, the work
on ACADO Toolkit has also led to joint publications [90, 91, 157, 158, 159, 160] which
are, however, not part of this thesis.

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



Part I

Robust Optimization

19
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Chapter 2

Robust Convex Optimization

2.1 The Convex Optimization Perspective

Let us start with an introduction to robust optimization problems from an convex
optimization perspective. For this aim, we regard functions F1, . . . , Fm : Rnx ×Rnw → R
and define an associated feasible set F ⊆ Rnx of the form

F :=

x ∈ Rnx

∣∣∣∣∣∣∣∣
∀w ∈W : F1(x,w) ≤ 0

...
∀w ∈W : Fm(x,w) ≤ 0

 .

In this context, x denotes a variable which we can choose, while w ∈ W is a variable
which our adverse player can choose assuming that the uncertainty set W ⊆ Rnw is given.
In other words, the feasible set F can be interpreted as the set of all x for which we can
guarantee that the functions F1, . . . , Fm do all take negative values no matter how the
uncertainty w ∈W is realized. A general robust optimization problem can now be written
as

min
x

max
w

F0(x,w) s.t. x ∈ F , (2.1.1)

where F0 : Rnx × Rnw → R is a given objective function.

Note that the above definition of the set F requires us in general to evaluate infinitely
many constraints. Only for the special case that the uncertainty set W contains a finite
number of points, this problem can directly be transformed into a standard mathematical

21
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22 ROBUST CONVEX OPTIMIZATION

program with a finite number of constraints. For this reason, problems of the form (2.1.1)
are called semi-infinite optimization problems.

Instead of formulating infinitely many constraints, an alternative is to evaluate the
constraints only at global uncertainty maximizers. For this aim, we assume first that the
functions Fi are continuous while the set W is compact such that we can define lower
level robust counterpart functions Vi : Rnx → R by

∀x ∈ Rn : Vi(x) = max
w∈W

Fi(x,w) with i ∈ {0, . . . ,m} . (2.1.2)

Using this notation, the optimization problem (2.1.1) can equivalently be written as an
optimization problem of the form

min
x

V0(x) s.t. Vi(x) ≤ 0 for all i ∈ {1, . . . ,m} . (2.1.3)

The difficulty of the above robust counterpart problem is two-sided: first, we need to solve
parameterized maximization problems in order to evaluate the functions Vi and second, we
need to solve a minimization problem to find the robust minimizer x∗ of the upper-level
problem (2.1.3). Due to this specific bi-level structure, robust counterpart problems of
the form (2.1.3) are also called min-max problems.

Clearly, if we succeed in working out explicit expressions for the functions Vi, the
problem (2.1.3) reduces to a standard minimization problem. Unfortunately, it is only in
a very limited amount of cases possible to work out such explicit expressions. On the
other hand, there are some “simple” but relevant cases where we can succeed in deriving
explicit expressions. Thus, we start our consideration of robust optimization problems by
collecting some of these cases. As most of these cases are based on ellipsoidal uncertainty
sets, we first introduce the following notation:

Definition 2.1 (Ellipsoid): We associate with each positive-semi definite matrix Q ∈ Sn+
and any vector q ∈ Rn an ellipsoid E(Q, q) ⊆ Rn . This ellipsoid is defined as

E(Q, q) =
{
q +Q

1
2 v
∣∣∣ ∃v ∈ Rn : vT v ≤ 1

}
. (2.1.4)

Depending on the context, we will also use the short-hand E(Q) := E(Q, 0) , whenever
we are interested in ellipsoids which are centered at the origin.

Now, we consider the following special cases of robust optimization in which it is possible
to work out the robust counterpart functions Vi explicitly. In Example 2.1 we concentrate
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THE CONVEX OPTIMIZATION PERSPECTIVE 23

on how to exploit the tight version of the Cauchy-Schwarz inequality for that purpose,
while Examples 2.2 and 2.3 employ the tight version of the triangle-inequality for Euclidean
norms.

Example 2.1: Let the functions Fi be uncertainty affine such that we have

Fi(x,w) = ci(x)Tw + di(x)

for some functions ci : Rnx → Rnw and di : Rnx → R, while the set W := E(Q, q) is an
ellipsoid with Q ∈ Snw+ and q ∈ Rnw . Then we can find explicit expressions for the worst
case functions Vi which can be written as

Vi(x) = max
w∈E(Q,q)

ci(x)Tw + di(x) =
√
ci(x)TQci(x) + ci(x)T q + di(x) .

Thus, in this special case, the associated robust counterpart problem reduces to a standard
minimization problem of the form

min
x

∥∥∥Q 1
2 c0(x)

∥∥∥
2

+ c0(x)T q + d0(x)

s.t.
∥∥∥Q 1

2 ci(x)
∥∥∥

2
+ ci(x)T q + di(x) ≤ 0 for all i ∈ {1, . . . ,m} .

Moreover, if the functions ci and di are all affine in x, the above optimization problem is
a convex second order cone programming (SOCP) problem.

Example 2.2 (Robust Least-Squares Optimization): Let us consider the case that the
function Fi is a term of the following form

Fi(x,w) := ‖ (A+ ∆)x ‖2 − d

assuming that the data matrix A ∈ Rm×n and the scalar offset d ∈ R are given while the
matrix ∆ ∈ Rm×n is unknown, i.e., the uncertainty vector can be written as w := vec(∆).
For the case that the uncertainty set is ellipsoidal, we may - after suitable scaling - assume
that

W := { ∆ | ‖∆‖F ≤ 1 } .

In order to compute the associated robust counterpart function, we employ the triangle
inequality

‖ (A+ ∆)x ‖2 ≤ ‖Ax ‖2 + ‖∆x ‖2 ≤ ‖Ax ‖2 + ‖x ‖2 .
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24 ROBUST CONVEX OPTIMIZATION

Note that we can always construct a ∆∗ ∈ W such that the above inequality is tight.
One way to check this is by choosing

∆∗ := AxxT

‖Ax‖ ‖x‖
.

In other words, we have found an explicit expression for the robust counterpart function

Vi(x) = max
∆∈W

‖ (A+ ∆)x ‖2 − d = ‖Ax ‖2 + ‖x ‖2 − d .

Note that the above consideration has applications in robust estimation. For example, if
we apply the triangle inequality with A :=

(
Â, b

)
, ∆ :=

(
∆̂, δ

)
and x :=

(
yT , 1

)T
we obtain

min
y

max
‖∆‖2

F+‖δ‖2
2 ≤ 1

∥∥∥(Â+ ∆̂)y + (b+ δ)
∥∥∥

2
= min

y

∥∥∥Ây + b
∥∥∥

2
+
√
‖y‖22 + 1 ,

which can be interpreted as the robust counterpart formulation of an uncertain least-squares
optimization problem. El-Ghaoui and Lebret have worked out several generalizations of
this result for which we refer to [85].

Example 2.3: Let us regard a generalization of Example 2.2 for functions of the form

Fi(x,w) := ‖ (A+ ∆)x ‖2 − (c+ δ)Tx ,

where the matrix A ∈ Rm×n and the vector c ∈ Rn are given while the matrix ∆ ∈ Rm×n
and the vector δ ∈ Rn are unknown. For the case that ∆ and δ are known to be bounded
by independent ellipsoids, we may - after suitable scaling - assume that the uncertainty
set has the form

W = { (∆, δ) | ‖∆‖F ≤ 1 and ‖δ‖2 ≤ 1 }

Combining the results from the previous two examples we easily find an explicit expression
for the robust counterpart function

Vi(x) := max
(∆,δ)∈W

‖ (A+ ∆)x ‖2 − (c+ δ)Tx = ‖Ax ‖2 − c
Tx + 2 ‖x ‖2 .

As the above inequality for x can easily be transformed into a second order cone constraint
using slack variables, a SOCP with uncertain data bounded by two independent ellipsoids,
is again an SOCP. Ben-Tal and Nemirovski have worked out several generalization of this
result for which we refer to [17, 19, 22]. Note that the same triangle-inequality trick can
be transferred also to LPs, QPs, or QCQPs with uncertain data, as they can all be written
as SOCPs.
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THE CONVEX OPTIMIZATION PERSPECTIVE 25

In the special cases from the examples above we learn that it is sometimes possible to
find explicit expressions for the robust counterpart functions Vi. In order to extend the
class of problems for which such explicit strategies are possible, we review some more
systematic concepts. Here, we follow the classical framework of Ben-Tal, Nemirovski,
and El-Ghaoui [17] employing duality techniques, which are known from the field of
convex optimization and which help us to reformulate “min-max” problems explicitly into
“min-min” problems. For this aim, we first define what we understand under lower level
convexity:

Definition 2.2 (Lower Level Convexity): We say that an optimization problem of the
form (2.1.3) is lower level convex if the uncertainty set W is convex, while the functions
Fi(x, ·) : W → R are for all indices i ∈ {1, . . . ,m} and for all x ∈ F concave functions
in w.

In the following, we assume that we have a given component-wise convex constraint
function B : Rnw → RnB such that the uncertainty set W can be written as

W = { w ∈ Rnw | B(w) ≤ 0 } .

The main strategy can now be outlined as follows: if the robust counterpart problem is
lower level convex while the uncertainty set W has a non-empty interior (Slater’s constraint
qualification), we can express the functions Vi equivalently via their dual problem:

Vi(x) = inf
λi>0

Di(x, λi) .

Here, the dual functions Di : Rnx × RnB+ → R are for all i ∈ {0, . . . ,m} defined as

Di(x, λi) := max
w

Fi(x,w)− λTi B(w) .

In some special cases, it is possible to work out explicit expressions for the Lagrange dual
functions Di. In such a situation, we can augment the upper level optimization variable
x by the dual optimization variables λ := (λ0 . . . , λm ) , i.e., the original “min-max”
problem (2.1.3) can be re-formulated into an equivalent “min-min” problem of the form

inf
x,λ>0

D0(x, λ0) s.t. Di(x, λi) ≤ 0 .

One of the most important prototype cases where the above strategy is applicable is
discussed within the following linear programming example:
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26 ROBUST CONVEX OPTIMIZATION

Example 2.4: Let the functions Fi be uncertainty affine such that we have

Fi(x,w) = ci(x)Tw + di(x) .

Moreover, we assume that the uncertainty set is a polytope of the form

W := {w | Aw ≤ b } (2.1.5)

for some matrix A ∈ RnB×nw and some vector b ∈ RnB . In this case, it is difficult
to find an explicit expression for the worst case functions Vi , but we can express the
objective value of the maximization problem as a minimization problem by using dual
linear programming:

Vi(x) = max
w

ci(x)Tw + di(x) s.t. Aw ≤ b

= min
λi≥ 0

bTλi + di(x) s.t. ATλi = ci(x) .

Thus, the robust counterpart problem can be reduced to a standard minimization problem
of the form

min
x,λ0,...,λm

bTλ0 + d0(x)

s.t. 0 ≥ bTλi + di(x)

0 ≤ λi

0 = ATλi − ci(x) for all i ∈ {1, . . . ,m} .

(2.1.6)

Moreover, for the case that the functions ci and di are itself affine in x the above
optimization problem is a convex linear programming problem.

Remark 2.1: The above example generalizes almost one-to-one to the case that the
functions Fi are affine in w, as above, but the uncertainty set is defined via semi-definite
inequalities, i.e.,

W :=

w
∣∣∣∣∣∣
nw∑
j=1

Ajwj � B

 ,

where A1, . . . , Am, B ∈ RnB×nB are given matrices. In this case the robust counterpart
functions are of the form

Vi(x) = max
w∈W

ci(x)Tw + di(x)

= min
Λi� 0

Tr
(
BTΛi

)
+ di(x) s.t. Tr

(
ATj Λi

)
= ci,j(x)
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THE CONVEX OPTIMIZATION PERSPECTIVE 27

with j ∈ {1, . . . , nw}.

It is an important observation that we always have higher level convexity of the upper
level problem if the functions Fi are convex in x. This result is independent of how the
uncertainty w enters.

Definition 2.3 (Upper Level Convexity): We say that the robust optimization problem
of the form (2.1.3) is upper level convex if the associated robust counterpart functions
Vi(x) : F → R are for all indices i ∈ {0, . . . ,m} convex functions.

Lemma 2.1 (A Sufficient Condition for Upper Level Convexity): If the parameter-
ized functions Fi(·, w) are for all w ∈W and for all i ∈ {0, . . . ,m} convex functions in x
then the robust optimization problem of the form (2.1.3) is upper level convex.

Proof: We can use that the maximum over convex functions is convex. �

Note that the dual functions Di are by construction always convex in λ and also jointly
convex in (x, λ), as long as the functions Fi are convex in x.

The above dual reformulation strategy as explained so far has the disadvantage that it is
based on the assumption that we can work out the dual function Di explicitly, which is not
always possible or can at least become inconvenient. However, we shall see later that the
numerical strategies for robust convex and non-convex optimization which we will develop
in Chapter 3 avoid this problem by avoiding to construct the dual Lagrange function
explicitly. Another important remark is that the convexity condition on the functions Fi
with respect to x, as required by Lemma 2.1, is only sufficient but by no means necessary
for upper level convexity. In order to illustrate this aspect, we consider the following
example:

Example 2.5: Let us consider the unconstrained scalar min-max problem

min
x

max
w

F0(x,w) with F0(x,w) := −x2 + bxw − w2 (2.1.7)

for some constant b ≥ 2. The function F0 is for no fixed w convex in x. Nevertheless, the
upper level problem turns out to be convex as the associated robust counterpart function
V0(x) = −x2 + 1

4(bx)2 is convex for b ≥ 2. This example outlines the fact that a robust
optimization problem can in some cases be “easier” to solve than any of its associated
nominal optimization problems with fixed uncertainties, as robustification leads sometimes
to a convexification.
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28 ROBUST CONVEX OPTIMIZATION

In the following Section 2.2 we will discuss some more advanced strategies which can help
us to exactly reformulate or conservatively approximate robust counterpart problems.

2.2 The S-Procedure for Quadratic Forms

In this section, we briefly review the concept of Lagrangian relaxation methods for
quadratic forms. The corresponding technique is historically known under the name
S-procedure [101, 117, 240] which must be considered as one of the basic tools in robust
optimization. In particular, the S-procedure is frequently used in the field of robust linear
system theory [230]. For a recommendable and more recent overview article on the
S-procedure, we also refer to [188].

The basic idea is very simple and can be outlined as follows: let us regard a possibly
non-convex quadratically constrained quadratic programming problem of the form

V := max
x

xTH0x+ gT0 x+ s0 s.t. xTHix+ gTi x+ si ≤ 0 (2.2.1)

with i ∈ {1, . . . ,m} and for some symmetric matrices Hi ∈ Snx , some vectors gi ∈ Rnx ,
and scalars si ∈ R. In the following we will assume that the above QCQP is strictly
feasible. Let us introduce the affine functions

H(λ) := H0 −
m∑
i=1

λiHi , g(λ) := g0 −
m∑
i=1

λigi , and s(λ) := s0 −
m∑
i=1

λisi .

Using this notation, we can write the dual of the quadratically constrained quadratic
programming problem as

V̂ := inf
λ> 0

max
x

xTH(λ)x + g(λ)Tx + s(λ)

= inf
λ> 0

1
4 g(λ)T H(λ)−1 g(λ) + s(λ) s.t. H(λ) ≺ 0 .

Finally, we employ the Schur complement formula to rewrite V̂ as the solution of a
semi-definite programming problem of the form

V̂ := min
λ≥ 0 , γ

γ s.t.
(
s(λ) − γ 1

2g(λ)T
1
2g(λ) H(λ)

)
� 0 (2.2.2)

One way to summarize the S-procedure for quadratic forms is the following:
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THE S-PROCEDURE FOR QUADRATIC FORMS 29

Lemma 2.2 (S-Lemma): The optimal value V̂ of the convex semi-definite programming
problem (2.2.2) is an upper bound on the optimal value V of the original quadratically
constrained quadratic program.

Remark 2.2: For special classes of quadratically constrained quadratic programming
problems explicit bounds on the sub-optimality of the approximation V̂ are known.
Originally such bounds have been analyzed in the context of the Maximum Cut
problem [103]. For more general sub-optimality estimates we also refer to [117, 176, 179].
In addition, there exists a tight version of the S-Lemma which will be discussed below.

Let us illustrate a few applications of the S-Lemma within the following examples:

Example 2.6: Let us consider a quadratic programming problem (QP) with symmetric
constraints of the form

V := max
x

xTH0x+ gT0 x s.t. − b ≤ Ax ≤ b .

If we square the constraints and write them in the form xT
(
ai a

T
i

)
x ≤ b2i with aTi

being the i-th row of the matrix A, the problem can be regarded as a QCQP. With

H(λ) := H0 +ATΛA , g(λ) := g0 , s(λ) = bTΛb , and Λ := diag(λ)

the SDP (2.2.2) yields a global upper bound V̂ on the optimal value V of the above
possibly non-convex QP with symmetric constraints.

Example 2.7: Let us come back to the discussion of uncertain optimization problems
from the previous section. We consider the case that the functions Fi(x,w) are quadratic
forms in the uncertainty w with

Fi(x,w) = wTHi(x)w + gi(x)Tw .

Moreover, we assume that the uncertainty set is an intersection of ellipsoids, i.e.,

W :=
⋂

j∈{1,...,N}
E(Qj , qj)

(
with Qj ∈ Snw++ and qj ∈ Rnw

)
.

Now, our aim is to find conservative approximations for the worst case functions

Vi(x) := max
w∈W

Fi(x,w) .
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30 ROBUST CONVEX OPTIMIZATION

Applying the above S-Lemma, we find that the functions

V̂i(x) := min
λi≥ 0 , γi

γi s.t.
(
si(x, λi) − γi

1
2gi(x, λi)

T

1
2gi(x, λi) Hi(x, λi)

)
� 0

are upper bounds on the functions Vi, i.e., we have V̂i(x) ≥ Vi(x) for all x ∈ Rnx . Here,
we use the notation

Hi(x, λi) := Hi(x)−
N∑
j=1

λi,jQ
−1
j , gi(x, λi) := gi(x) +

N∑
j=1

2λi,jQ−1
j qj ,

and si(x, λi) :=
N∑
j=1

2λi,j
(

1 − qTj Q
−1
j qj

)
.

Consequently, we can construct a conservative robust counterpart problem of the form

min
x

V̂0(x) s.t. V̂i(x) ≤ 0 with i ∈ {1, . . . ,m} ,

which can equivalently be written as

min
x,γ,λ0,...,λm

γ0 s.t.


∀i ∈ {1, . . . ,m} : 0 ≥ γi , 0 ≤ λi ,

0 �
(
si(x, λi) − γi

1
2gi(x, λi)

T

1
2gi(x, λi) Hi(x, λi)

)
.

(2.2.3)

In particular, for the case that the functions H0 and g0 are affine in x the above approximate
robust counterpart problem is a semi-definite programming problem.

As mentioned, there exist different formulations and derivations of the S-Lemma. The
S-Lemma can be interpreted as a tool for convexification and in this thesis we want
to understand this aspect from all its perspectives such that we can later use these
convexification properties in the context of robust optimization. Let us convexify the
quadratically constrained quadratic program (2.2.1) by using that the optimization problem

V := max
x,X

Tr(H0X) + gT0 x+ s0 s.t.
{

0 ≥ Tr(HiX) + gTi x+ si

X = xxT
(2.2.4)

(with i ∈ {1, . . . ,m}) is equivalent to the original QCQP (2.2.1). In this problem all the
“non-convexity“ is collected in the constraint X = xxT on the auxiliary matrix X ∈ Snx+ .
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THE S-PROCEDURE FOR QUADRATIC FORMS 31

Thus, if we simply relax this equality constraint, the objective value can only get bigger.
In other words, if we define

∼
V := max

x,X
Tr(H0X) + gT0 x+ s0 s.t.


0 ≥ Tr(HiX) + gTi x+ si

0 �
(

1 xT

x X

) (2.2.5)

with i ∈ {1, . . . ,m}, then we have
∼
V ≥ V . This relaxation method and the S-procedure

turn out to be equivalent as the semi-definite programming problems (2.2.2) and (2.2.5)
are dual to each other, i.e., both convexification strategies yield the same lower bound
∼
V = V̂ on the objective value V .

Motivated by the above considerations, we work out yet a third way to formulate the
S-Lemma looking for a second order sufficient global optimality condition for non-convex
quadratically constrained quadratic programs:

Lemma 2.3 (A Sufficient Condition for Global Optimality): Let (x∗, λ∗) be a primal-
dual KKT point of the QCQP (2.2.1) at which Slater’s constraint qualification is satisfied.
If the associated Hessian matrix is negative semi-definite, i.e., if we have

H(λ∗) = H0 −
m∑
i=1

λ∗iHi � 0 ,

then (x∗, λ∗) is a global maximizer of the QCQP (2.2.1). Moreover, if the above negative
semi-definiteness condition is satisfied, then the inequality in the S-Lemma is tight, i.e.,
we have V = V̂ .

Proof: Let (x∗, λ∗) be a primal-dual KKT point which satisfies the above negative semi-
definiteness condition such that we can define the matrices X∗ := x∗ (x∗)T as well
as Z∗ := −H0 +

∑m
i=1 λ

∗
iHi � 0. Now, we note that the convex maximization

problem (2.2.5) can also be written as

∼
V := max

x,X
Tr(H0X) + gT0 x+ s0 s.t.

{
0 ≥ Tr(HiX) + gTi x+ si

0 � X − xxT
(2.2.6)
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32 ROBUST CONVEX OPTIMIZATION

As we assume Slater’s constraint qualification to be satisfied, the associated necessary and
sufficient optimality conditions are that there exists a Z ∈ Snx and a λ ∈ Rm such that

0 = H0 −
∑m
i=1 λiHi + Z 0 = g0 −

∑m
i=1 λigi − 2Zx

0 ≥ Tr(HiX) + gTi x+ si 0 � X − xxT

0 ≤ λi 0 � Z

0 = Tr(ZX)− xTZx 0 =
∑m
i=1 λi (Tr(HiX) + gTi x+ si) .

It is readily checked that the point (x∗, X∗, λ∗, Z∗) satisfies the above conditions by
construction. Thus, we have found a global solution to problem (2.2.5) whose objective
value V̂ is coinciding with the objective value V of the original possibly non-convex QCQP.
The statement of the Theorem is a direct consequence. �

Unfortunately, the above criterion is not necessary, i.e., there exist cases in which we can
find a global optimizer of a non-convex QCQP at which the above sufficient condition is
not satisfied. Only for convex QCQPs, i.e., if the matrix H0 is negative semi-definite while
the matrices Hi are for i ∈ {1, . . . ,m} positive semi-definite the sufficient conditions in
the above Lemma 2.3 are always satisfied. In general, we only know that the Hessian
matrix H(λ∗) must be negative semi-definite on the tangential sub-space spanned by the
active constraints (c.f. e.g. [182] for a discussion of the details of second order necessary
condition for local minima).

Example 2.8: Consider the simple scalar optimization problem

max
x

x2 + x s.t. x2 ≤ 1 .

The problem has obviously a local maximum at x = −1 (with dual solution λ = 1
2) while

the global solution is at x = 1 (with dual solution λ = 3
2). In the local solution at x = −1,

the associated symmetric matrix turns out to be H(1/2) = 1
2 while the global solution

satisfies H(3/2) = −1
2 , i.e., we are in the lucky case that we can verify the sufficient

optimality conditions from Lemma 2.3. Indeed, the corresponding dual can be written as

max
γ,λ≥ 0

γ

s.t. 0 �
(
λ− γ 1

2
1
2 1− λ

)
.

This convex SDP has a unique solution at (γ∗, λ∗) = ( 2, 3
2 ).
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The above example illustrates that Lemma 2.3 can be useful in some special cases. In
fact, if we have m = 1, i.e., if there is only one possibly non-convex quadratic constraint,
the condition in Lemma 2.3 is also necessary. We summarize this result in form of the
following Theorem:

Theorem 2.1 (Tight Version of the S-Procedure): Let us consider a QCQP of the
general form (2.2.1) for the special case that we have only one quadratic constraint,
i.e., m = 1, and let H1 be positive definite. In this case, the objective value V of the
QCQP (2.2.1) is coinciding with the objective value V̂ of the convex SDP (2.2.2), i.e.,
we have strong duality.

Proof (Via the ”Mirror Trick“): As H1 is assumed to be positive definite, we can also
assume without loss of generality that the QCQP can equivalently be written as

max
x

xTDx+ dTx s.t.
n∑
i=1

x2
i ≤ 1 (2.2.7)

for some diagonal matrix D ∈ Sn and d ∈ Rn. If the QCQP is not in this form, we can
always reformulate the problem by simple linear algebra transformations (rescale,shift,and
diagonalize). Our aim is to show that every primal-dual global maximizer (x∗, λ∗) of the
problem (2.2.7) satisfies Di,i − λi ≤ 0 for all i ∈ {1, . . . , n} such that we can apply
Lemma 2.3. Thus, we assume by contradiction that we have a global maximizer (x∗, λ∗)
and a component i ∈ {1, . . . , n} for which Di,i − λ∗i > 0 . Multiplying the stationarity
condition of the form 2(Di,i − λ∗i )x∗i + di = 0 with x∗i we find

dix
∗
i

2 = −(Di,i − λ∗i )(x∗i )2 < 0 ,

as we may assume x∗i 6= 0, as we only need to consider the non-trivial case di 6= 0. Now,
we construct a mirror point y∗ ∈ Rn of x∗ by choosing y∗j := x∗j for all j 6= i as well as
y∗i := −x∗i . Note that the mirror point y∗ is feasible as we have

n∑
i=1

(y∗i )
2 =

n∑
i=1

(x∗i )
2 ≤ 1 .

In addition, we have (y∗)TDy∗ = (x∗)TDx∗ as the matrix D is diagonal as well as
dT y∗ > dTx∗. Note that this contradicts our assumption that x∗ is a global maximizer,
as y∗ is a feasible point which yields a larger objective value than x∗. Consequently, we
may conclude the statement of the Theorem by employing Lemma 2.3. �
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34 ROBUST CONVEX OPTIMIZATION

Remark 2.3: In order to understand the idea behind the proof, it might help to verify
in Example 2.8 that the global solution at x = 1 is actually a mirror point of the local
solution at x = −1 .

Remark 2.4: The above Theorem has applications in the field of trust-region methods [60],
where a locally quadratic and possibly indefinite model must be minimized subject to a
quadratic trust region constraint.

Remark 2.5: Note that there exist many interesting variants of the above Theorem. For
example in [180] it is remarked that an unconstrained and possibly non-convex cubic
problem of the form

min
x

1
2x

THx+ gTx+ µ ‖x‖32

with µ > 0 being sufficiently large can be solved globally by introducing a scalar slack
variable a and reformulating the problem into an equivalent problem of the form

min
x,a

1
2x

THx+ gTx+ µa
3
2 s.t. xTx ≤ a ,

such that the tight version of the S-procedure can be applied in the variable x. This leads
to a convex problem as the term a

3
2 is convex in a ≥ 0.

The main reason why we are in this thesis interested in the above tight version of the
S-procedure can be motivated by looking once more at Example 2.7: if the uncertainty
set is not a general intersection of ellipsoids but just one ellipsoid, the conservative robust
counterpart reformulation for the case of quadratic uncertainty becomes exact.

Example 2.9: Let us once more regard the unconstrained least squares optimization
problem from Example 2.2 which has the form

min
x∈X

‖ (A+ ∆)x ‖22 with W := { ∆ | ‖∆‖F ≤ 1 } ,

for which the data matrix A ∈ Rm×n is given but the matrix ∆ ∈ W unknown. As an
alternative to an application of the triangle inequality, we can use that the least squares
term is a quadratic form in ∆ while we have only one convex quadratic constraint. Applying
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the tight version of the S-procedure (Theorem 2.1), we find

V (x) := max
∆∈W

‖ (A+ ∆)x ‖22

= inf
λ> ‖x ‖2

2

max
∆

Tr
(

(A+ ∆)T (A+ ∆)xxT
)
− λTr(∆T∆) + λ

= inf
λ> ‖x ‖2

2

‖Ax ‖22 + ‖Ax ‖22
‖x ‖22

λ− ‖x ‖22
+ λ

= ( ‖Ax ‖2 + ‖x ‖2 )2 .

The result is of course the same as with the strategy from Example 2.2.

2.3 Inner and Outer Ellipsoidal Approximation Methods

Even if a given set F ⊆ Rn is convex, it is not always clear how we can represent it on
a computer. For example, if F is a given polytope with a large number of facets, we
might run out of memory or at least operations which involve the set F can become very
expensive. In such cases, it is often more reasonable to study suitable set approximation
techniques. In this section, we put a special emphasis on inner and outer set approximation
methods which exploit the fact that ellipsoids are for many situations suitable geometric
objects for a representation or approximation of sets in higher dimensions.

Let us start our review of set-theoretic methods by the introduction of the support function
V : Rn → R of a compact and convex set F , which is defined as

V (c) := max
x

cTx s.t. x ∈ F . (2.3.1)

In the analysis of convex sets support functions can be considered as one of the most
basic but also very useful tools. Here, V (c) can be interpreted as the maximum extension
of the set F in the direction which is defined by the vector c.

Example 2.10 (The Support of an Ellipsoid ): With Q ∈ Sn+ and q ∈ Rn we consider
the special case that the set F = E(Q, q) is an ellipsoid. In this case, the support or
maximum extension V (c) is for all directions c given by

V (c) = max
x∈E(Q,q)

cTx =
√
cTQc+ cT q , (2.3.2)
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36 ROBUST CONVEX OPTIMIZATION

i.e., for this special case we have found an explicit expression for the support function.

The main reason why support functions are useful is that they can be employed to uniquely
characterize a convex set F . While the above definition constructs the support function
V from a convex and compact set F , we can also consider an inverse argumentation,
i.e., we can re-construct the set F from its support function. For this aim, we define the
supporting halfspaces H(c) ⊆ Rn of a compact and convex set F for all directions c ∈ Rn
as

H(c) :=
{
x ∈ Rn | cTx ≤ V (c)

}
. (2.3.3)

Now, we can regard the following Lemma, whose proof can be found in [46]:

Lemma 2.4: If F is a compact and convex set, then it is uniquely characterized by its
support function. More precisely, a convex and compact set F can be represented as the
intersection of its supporting halfspaces:

F =
⋂

c∈Rn\{0}
H(c) . (2.3.4)

In the following discussion it will be important to recognize ellipsoids when dealing with
support functions. In order to illustrate why Lemma 2.4 is helpful for that purpose, we
consider the following example:

Example 2.11 (Identification of Ellipsoids): If F ⊆ Rn is a compact and convex set
whose support function satisfies

∀c ∈ Rn : V (c) =
∥∥∥Q 1

2 c
∥∥∥

2
+ cT q

for some Q ∈ Sn+ and some q ∈ Rn, then F is an ellipsoid of the form E(Q, q).

In the following, we are interested in constructing parameterized inner and outer
approximations of convex and compact sets. Here, we have to specify first what we
understand when referring to parameterized (or lifted) set approximations. For this aim,
we assume that we have a suitable set D+ ⊆ Rnp of parameters while Π(Rn) denotes the
set of all subsets (including the empty set) of Rn. Now, a function F+ : D+ → Π(Rn) is
called a parameterized outer approximation of the set F , if we have

∀λ ∈ D+ : F ⊆ F+(λ) .
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INNER AND OUTER ELLIPSOIDAL APPROXIMATION METHODS 37

Moreover, we say that the parameterized outer approximation is tight if the intersection
of the sets F+(λ) coincides with the set F , i.e., if we have

F =
⋂

λ∈D+

F+(λ) .

It should be clear that parameterized inner approximations of a set F can be defined in
an analogous manner.

Example 2.12: Let us consider the case that F := {x ∈ Rn | Ax ≤ b } is a given
polytope with A ∈ Rm×n and b ∈ Rm. Note that if the integer m is very large, this
polytope is expensive to store. Thus, we might be interested in constructing a polytope
with at most l � m facets which approximates the polytope F from outside. In order
to provide one possible approach to deal with this problem recall the techniques from
Example 2.4, where we have discussed robust linear programming. Transferring these
techniques to our current situation, we observe that the parameterized polyhedra of the
form F+(Λ) := {x | C(Λ)x ≤ d(Λ) } with

C(Λ) := ΛTA and d(Λ) := ΛT b

are for all Λ ∈ D+ outer approximations of the set F . Here, D+ denotes the set of all
(m× l)-matrices with positive components, i.e., we have used the following definition of
the parameter set:

D+ :=
{

Λ ∈ Rm×l | ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , l} : Λi,j ≥ 0
}
.

Taking the intersection of the sets F+(Λ) for all Λ ∈ D+ yields again the original polytope
F , as there are no duality gaps, i.e., the parameterized outer approximation is tight.

Regarding the argumentation in the above example, we can already recognize that there
are connections between robust counterpart problems and set approximation techniques.
The question which we are asking here is how we can systematically find or construct
a suitable set D+ and an associated set valued function F+ with the above tightness
properties, such that the sets of the form F+(λ) have a suitable geometry aiming at
efficient representations of these sets. For convex sets, one possible strategy is to exploit
the concept of duality. In order to understand this, note that the support function V of
a convex and compact set F is by definition the optimal value of a convex optimization
problem. Thus, if F has a non-empty interior, we may assume that we can construct an
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38 ROBUST CONVEX OPTIMIZATION

associated dual function D : Rn × D+ → R such that V can equivalently be expressed as
the optimal value of a minimization problem of the form

V (c) = inf
λ∈D+

D(c, λ) .

Using this notation, we can define a set valued function F+ as

∀λ ∈ D+ : F+(λ) :=
⋂
c∈Rn

{
x ∈ Rn | cTx ≤ D(c, λ)

}
. (2.3.5)

Note that the sets F+(λ) are by construction convex as intersections of convex sets
are convex. Additionally, the function F+ turns out to be a tight parameterized outer
approximation:

Theorem 2.2 (Lifted Outer Approximations): Let F ⊆ Rn be a given compact
set and let the function F+ be constructed as in equation (2.3.5), then F+ is a tight
parameterized outer approximation, i.e., we have

F =
⋂

λ∈D+

F+(λ) .

The same construction is also possible for non-convex sets F , but in this case the
parameterized outer approximation F+ is not tight anymore.

Proof: This Theorem is a consequence of Lemma 2.4. In order to show this, we regard
two compact and convex sets F1,F2 ⊆ Rn together with their associated support
functions V1, V2 : Rn → R. Due to Lemma 2.4 we know that we have an inclusion of the
form F1 ⊆ F2 if and only if the inequality V1(c) ≤ V2(c) is satisfied for all c ∈ Rn. If
we apply this observation with F1 := F and F2 := F+(λ), we find that we must have

F ⊆ F+(λ)

for all λ ∈ D+, as the associated support functions satisfy by construction an inequality of
the form V1(c) = V (c) ≤ D(c, λ) = V2(c). If there is no duality gap, we find that the
parameterized outer approximation is tight. �

In the following, we shall see that Theorem 2.2 is a fruitful tool for the development of
set approximation methods. However, before we discuss such applications, we first extend
the above general framework to inner approximations, too. Let us introduce a notation
for polar sets:
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Definition 2.4 (Polar Set): Let F ∈ Rn be a given set. The polar set F∗ ∈ Rn
associated with the set F is defined as

F∗ :=
{
y ∈ Rn

∣∣∣∣∣ sup
x∈F

xT y ≤ 1
}
.

Note that the polar set is by definition a convex set, as the supremum over linear functions
is a convex function. In our context, polar sets are useful as they can be employed to swap
between inner and outer approximations of absolutely convex sets. More precisely, our
plan is to employ the following two propositions which can for example be found in [84]:

Proposition 2.1: Let F1,F2 ∈ Rn be two given sets with F1 ⊆ F2 . Then the polar
set of F2 is an inner approximation of the polar set of F1 , i.e., we have F∗2 ⊆ F∗1 .

Proposition 2.2: If F is compact and absolutely convex then the polar of the polar set
is coinciding with the original set, i.e., (F∗)∗ = F . Here, a set F is absolutely convex,
if we have for all x, y ∈ F also

λ1x+ λ2y ∈ F for all λ1, λ2 ∈ R with |λ1|+ |λ2| ≤ 1 .

In order to understand how we can work with polar sets, we start with the following
example:

Example 2.13 (The Polar Set of an Ellipsoid): Let Q ∈ Sn++ be a positive definite
matrix and E(Q) its associated ellipsoid using the notation from Definition (2.1). In order
to compute the polar of E(Q) we note that

E(Q)∗ =
{
y ∈ Rn

∣∣∣∣∣ max
xTQ−1x ≤ 1

xT y ≤ 1
}

=
{
y ∈ Rn

∣∣∣ yTQy ≤ 1
}

= E(Q−1) .

Thus, the polar of an ellipsoid is again an ellipsoid. In particular, the polar set of the unit
ball E(I) remains the unit ball.

One possible strategy to construct a parameterized (or lifted) inner approximation of an
absolutely convex and compact set F is to first compute the support function V ∗ : Rn → R
of the polar set of F , i.e., we define for all c ∈ Rn:

V ∗(c) := sup
x

cTx s.t. x ∈ F∗ .
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40 ROBUST CONVEX OPTIMIZATION

Now, we proceed similarly to the construction of outer approximations, i.e., we assume that
we manage to find a convex set D− and an associated dual function D∗ : Rn × D− → R
such that the objective value of the above convex maximization problem can equivalently
be written as

V ∗(c) = inf
λ∈D−

D∗(c, λ) .

Using this notation, we can define a set valued function F− : D− → Π(Rn) for all λ ∈ D−
as

F−(λ) :=
[
F∗−(λ)

]∗ with F∗−(λ) :=
⋂
c∈Rn

{
x ∈ Rn | cTx ≤ D∗(c, λ)

}
.(2.3.6)

Here, it should be mentioned that the function D∗ takes only positive values which implies
that the convex sets F∗−(λ) contain for all λ ∈ D− the origin such that the corresponding
polar sets F−(λ) are well-defined. Using this definition, the function F− turns out to be
a tight parameterized inner approximation of the original set F as summarized within the
following Theorem:

Theorem 2.3 (Lifted Inner Approximations): Let F ⊆ Rn be a given absolutely
convex and compact set and let the function F− be constructed as in equation (2.3.6),
then F− is a tight parameterized inner approximation, i.e., we have

F =
⋃

λ∈D−
F−(λ) .

The same construction is also possible for non-convex sets F , but in this case the
parameterized inner approximation F− is not tight anymore.

Proof: The proof of this theorem can be obtained in two steps: in the first step, we
apply Theorem 2.2, which guarantees that the sets F∗−(λ) ⊇ F∗ are by construction
tight parameterized outer approximations of the polar set F∗. And in the second step, we
apply Proposition 2.1 to show that the polar sets F−(λ) of the outer approximations of
F∗ must be inner approximation of the original set F . �

So far, the above construction methods for parameterized inner and outer approximations
of convex sets are discussed on a quite abstract level. However, the applicability of the
framework becomes clear by studying some more concrete cases. The aim of the following
sections is to work out parameterized inner and outer approximations of convex sets by
studying particular constructions which are based on ellipsoids and polytopes. This analysis
is driven by the observation that ellipsoids are suitable candidates for the approximation
of more general sets.
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Outer Approximations of Sums of Ellipsoids

In this section, we concentrate on outer approximations of the geometric sum of N
ellipsoids. Let us define such a set sum as follows:
Definition 2.5 (Sum of Ellipsoids): Let Qi ∈ Sn+ with i ∈ { 1, . . . , N } be given positive
semi-definite matrices, qi ∈ Rn, and E(Qi, qi) the associated ellipsoids. The sum of these
ellipsoids is defined as the standard Minkowski sum, i.e., we write

N∑
i=1
E(Qi, qi) :=

{
N∑
i=0

xi ∈ Rn
∣∣∣∣∣ xi ∈ E(Qi, qi) for all i ∈ { 1, . . . , N }

}
.

It can easily be checked that a sum of ellipsoids is a convex set. Moreover, a finite sum of
ellipsoids is compact. However, a sum of ellipsoids is in general not again an ellipsoid. For
illustration, we regard the following example:
Example 2.14: Let e1, e2 ∈ R2 with e1 := (1, 0)T and e2 := (0, 1)T be the unit
vectors in R2 as well as Q1 := e1 e

T
1 and Q2 := e2 e

T
2 . The sum of the ellipsoids

E(Q1) + E(Q2) =
{

(x, y) ∈ R2
∣∣∣ x2 ≤ 1 and y2 ≤ 1

}
is the unit square. More generally, for m generating vectors a1, . . . , am ∈ Rn the
associated zonotope can be written as a sum of m ellipsoids:

m∑
i=1
E
(
aia

T
i

)
=

{
m∑
i=1

λiai ∈ Rn
∣∣∣∣∣ − 1 ≤ λi ≤ 1 for all i ∈ {1, . . . ,m}

}
.

Example 2.15: Sums of ellipsoids have been analyzed for a long time - especially in the
context of dynamic systems. For example Schweppe and Glover [102, 209] have used
ellipsoids to approximate reachable sets of uncertain dynamic systems. These techniques
have later extensively been worked out by Kurzhanski and Varaiya [146, 144] and also by
Brockman and Corless in [47]. Later, in Chapter 5, we will review these techniques in all
details, but in order to outline already at this point why sums of ellipsoids are important
in the context of dynamic systems, we regard a linear discrete time system of the form

x+ = Ax + Bw , (2.3.7)

where x ∈ E(Qx) is the current state which is known to be in the ellipsoid E(Qx) ⊆ Rnx ,
while the input w ∈ E(Qw) ⊆ Rnw . The “next” state, which is denoted by x+ ∈ Rnx , is
then known to be in the set

E
(
AQxA

T
)

+ E
(
BQwB

T
)
,
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42 ROBUST CONVEX OPTIMIZATION

which is a sum of two ellipsoids. In the following consideration, we discuss how to
approximate this set sum again with one single but parameterized ellipsoid from outside.

In the following, we assume without loss of generality that the ellipsoids are centered at 0,
i.e., it is enough to study sums of the form F =

∑N
i=1 E(Qi) ⊆ Rn. Here, we use the

fact that a sum of general ellipsoids may always be written as
N∑
i=1
E(Qi, qi) =

{
N∑
i=1

qi

}
+

N∑
i=1
E(Qi) ,

i.e., we can always decompose the sum into an additive offset and a sum of centered
ellipsoids. Following the construction principle which has been outlined above, we first
compute the support function of a sum of ellipsoids. For this aim, we assume for a moment
that the matrices Q1, . . . , QN are invertible such that we can write the corresponding
maximization problem in the form

V (c) = max
x1,...,xN

cT
(

N∑
i=1

xi

)
s.t. xTi Q

−1
i xi ≤ 1 for all i ∈ {1, . . . , N} .

As this is a convex maximization problem and x1 = . . . = xN = 0 is a feasible point, i.e.,
Slater’s condition is satisfied, we continue by computing V (c) via the associated dual
problem

V (c) = inf
λ>0

max
x1,...,xN

N∑
i=1

(
cTxi − λixTi Q−1

i xi + λi
)

= inf
λ>0

N∑
i=1

cTQic

4λi
+

N∑
i=1

λi .

In order to understand the next reformulation step, it is helpful to first verify the general
relation, which is in a similar version also known under the name “(tight) arithmetic-
geometric inequality” or shorter “(tight) AM-GM inequality”:

inf
κ>0

a

4κ + κ b =
√
ab , (2.3.8)

which holds for all a, b ∈ R+. In order to make use of this relation, we rescale the dual
variables λi by introducing a redundant scaling factor κ finding

V (c) = inf
λ>0

inf
κ>0

N∑
i=1

cTQic

4κλi
+

N∑
i=1

κλi = inf
λ>0

√
cT Q(λ ) c . (2.3.9)
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INNER AND OUTER ELLIPSOIDAL APPROXIMATION METHODS 43

Here, we have introduced a matrix valued function Q : RN++ → SN+ which is defined by

∀λ ∈ RN++ : Q(λ) :=
(

N∑
i=1

1
λi
Qi

)(
N∑
i=1

λi

)
.

The main aspect of this transformation is that equation (2.3.9) holds for all directions c ∈
Rn \ {0}. In other words, we can for any λ ∈ RN++ interpret the set F+(λ) := E(Q(λ) )
as an ellipsoidal outer approximation. As we can rescale the variables λi once more such
that ∑N

i=1 λi = 1, we arrive at the following Theorem:

Theorem 2.4: Let us define the set D+ ⊆ RN++ of feasible parameters to be a half-open
unit simplex by

D+ :=
{
λ ∈ RN++

∣∣∣∣∣
N∑
i=1

λi ≤ 1
}
.

The ellipsoid F+(λ) := E(Q(λ) ) is for every λ ∈ D+ an outer approximation of the
set F =

∑N
i=1 E(Qi) . In other words, we have

∀λ ∈ D+ : F =
N∑
i=1
E(Qi) ⊆ E

(
N∑
i=1

1
λi
Qi

)
= F+(λ) . (2.3.10)

Here, the matrices Q1, . . . , Qn ∈ Sn+ are not necessarily invertible. Moreover, the
parameterized outer approximation is tight, i.e., we have F =

⋂
λ∈D+

F+(λ) .

Proof: If the matrices Q1, . . . , QN are invertible, the above statement follows from
equation (2.3.9) as this equation holds for all directions c while an ellipsoid can uniquely
be characterized by the intersection of halfspaces as discussed in Lemma 2.4. Thus, the
above statement is coinciding with the statement of Theorem 2.2 with the only difference
that the statement is now specialized to the case that F is a sum of ellipsoids.

In order to complete the above argumentation, we still have to show that the
inclusion (2.3.10) holds also for general positive semi-definite matrices Q1, . . . , QN . Here,
the main idea is to fix some λ ∈ RN++ add a small regularization term εI for some
ε > 0 to the matrices Q1, . . . , QN , such that the inclusion (2.3.10) still holds. As the
set F is compact, the limit for ε → 0 exists on both sides of the inclusion (2.3.10).
Consequently, we can conclude that this inclusion also holds for the case that Q1, . . . , QN
are general positive semi-definite matrices. Finally, we have to show that the relation
F =

⋂
λ∈D+

F+(λ) holds. For this aim, we apply the same trick, i.e., we first construct
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44 ROBUST CONVEX OPTIMIZATION

the regularized support function

Vε(c) := inf
λ>0

N∑
i=1

cT [Qi + εI ] c
4λi

+
N∑
i=1

λi .

The main point is now that we may exchange the limits in the transformation

lim
ε→0

Vε(c) := lim
ε→0

inf
λ>0

N∑
i=1

cT [Qi + εI ] c
4λi

+
N∑
i=1

λi

= inf
λ>0

lim
ε→0

N∑
i=1

cT [Qi + εI ] c
4λi

+
N∑
i=1

λi = inf
λ>0

N∑
i=1

cTQic

4λi
+

N∑
i=1

λi ,

since the limits uniformly exist. Thus, the argumentation can be rescued for the case that
the matrices Q1, . . . , QN are general positive semi-definite matrices. �

Remark 2.6: As we have already mentioned within Example 2.15, sums of ellipsoids
have been analyzed by many authors in different contexts. The above Theorem has for
example in a very similar version been proven by Kurzhanski and Varaiya [144, 146] in
the context of computing reachable sets for dynamic systems. In the literature of robust
convex optimization, for example in the work by Ben-Tal and Nemirovski [21], similar
results can be found.

Remark 2.7 (Relation to the S-procedure): Theorem 2.4 can be derived with different
techniques. A possible alternative derivation is based on the observation that we have an
inclusion of the form ∑N

i=0 E(Qi) ⊆ E(Q) for some positive definite matrices Q,Qi ∈ Sn++
if and only if the inequality

1 ≥ max
x

(
N∑
i=1

xi

)T
Q−1

(
N∑
i=1

xi

)
s.t. xTi Q

−1
i xi ≤ 1 i ∈ {1, . . . , N} (2.3.11)

is satisfied. On the right-hand side of inequality (2.3.11) we find a QCQP problem for
which we can apply the S-procedure in order to obtain a sufficient condition under which
we can guarantee the desired inclusion. By working this out we find the following condition:
if there exist multipliers λ1, . . . , λN > 0 which satisfy the inequality ∑N

i=1 λi ≤ 1 as well
as an LMI of the form

Q−1 − λ1Q
−1
1 Q−1 . . . Q−1

Q−1 Q−1 − λ2Q
−1
2 . . . Q−1

... . . . ...
Q−1 . . . Q−1 Q−1 − λNQ−1

N

 � 0 , (2.3.12)
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INNER AND OUTER ELLIPSOIDAL APPROXIMATION METHODS 45

then inequality (2.3.11) is satisfied1. This LMI can be solved recursively by taking Schur
complements and simplifying the recursion with the Sherman-Morrison-Woodbury formula.
This shows that the LMI (2.3.12) is satisfied if and only if the condensed semi-definite
inequality Q �

∑N
i=1

1
λi
Qi holds. Now, we can continue as in the first proof of

Theorem 2.4 to extend this result for positive semi-definite matrices Q1, . . . , QN , too.

We should be clear about the fact that the above Theorem 2.4 does not make any
statement about how we can find a λ ∈ D+ which yields an “optimal” ellipsoidal outer
approximation. Rather, Theorem 2.4 should be interpreted as a tool which yields a whole
family of outer approximations. Which of these approximations can be regarded optimal
depends on the context and our objective. For example, if we optimize the ellipsoidal
outer approximation for a specified direction, we obtain the following result:

Corollary 2.1 (Tight Ellipsoidal Outer Approximations): If the optimization problem

inf
λ∈D+

max
x∈F+(λ)

cTx = inf
λ∈D+

cT
(

N∑
i=1

1
λi
Qi

)
c (2.3.13)

has a minimum at λ∗ the associated ellipsoidal outer approximation F+(λ∗) = E(Q(λ∗))
is tight in the sense that the ellipsoid E(Q(λ∗)) touches the set F =

∑N
i=1 E(Qi) once

in the direction c and - due to symmetry - once more in the direction −c. Moreover, the
above optimization problem is convex.

Proof: This corollary follows directly from equation (2.3.9). Here, the convexity follows
from the fact that the sum over the convex functions of the form cTQic

λi
is convex while

the set D+ is convex, too. �

Remark 2.8: The convex optimization problem from Corollary 2.1 can also be written as

inf
λ∈RN++

cT Q(λ) c with Q(λ) =
(

N∑
i=1

1
λi
Qi

)(
N∑
i=1

λi

)
. (2.3.14)

The only difference is that we have dropped the scaling constraint. In this form,
problem (2.3.14) is non-convex and seems on the first view more difficult to solve.

1In [188] (Theorem 4.2) an LMI of the form (2.3.12) is discussed for the case N = 2. In this case, the
statement can also be inverted, i.e., we have E(Q1) + E(Q2) ⊆ E(Q) with Q1, Q2 ∈ Sn++ if and only if
there exists multipliers λ1, λ2 ≥ 0 for which the LMI (2.3.12) can be satisfied. However, it is important to
note that this statement is in general not true for N > 2.
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46 ROBUST CONVEX OPTIMIZATION

However, problem (2.3.14) can be regarded as a geometric programming problem. This
can be seen if we apply a variable substitution of the form λi := eνi such that we obtain
the equivalent convex optimization problem

inf
ν∈Rn

N∑
i=1

N∑
j=1

cT Qi c e
νj−νi . (2.3.15)

In later chapters we will encounter the situation where the form (2.3.14) is more appropriate.
Thus, we keep in mind that problem (2.3.14) is in general not convex but a geometric
programming problem which can equivalently be transformed into a convex (but not
strictly convex) problem of form (2.3.15).

Note that the set {F+(λ) | λ ∈ D+ } of ellipsoidal outer approximations which can
be generated with the technique from Theorem 2.4 does not contain all possible outer
ellipsoidal approximations, although it contains for every direction c an associated ellipsoidal
outer approximation which touches the set F . For example, if we search for a λ∗ ∈ D+ for
which the associated ellipsoid F+(λ∗) has a minimum volume, this does not imply that
we have found a minimum volume ellipsoid containing the set F , although we might hope
that F+(λ∗) is a good approximation for that purpose. Unfortunately, it is in general
difficult to construct a family of outer approximations which is not only tight, but does
also contain all outer approximations with a given structure.

In order to extend our consideration of outer approximations of sums of ellipsoids, we
discuss a second more powerful but also more expensive way to parameterize the outer
approximation. The idea is to write the support function as

V (c) = max
x1,...,xN

cT
(

N∑
i=1

xi

)
s.t. xix

T
i � Qi for all i ∈ {1, . . . , N} .

If we dualize the above convex maximization problem into a minimization problem, we
need a matrix valued multiplier Λ ∈ Sn+ finding

V (c) = inf
Λ�0

N∑
i=1

cTQ
1
2
i Λ−1

i Q
1
2
i c

4 +
N∑
i=1

Tr (Λi) .

Now, we can apply the same strategy as above which leads to following result:
Theorem 2.5: Let us define the set D+ ⊆

(
Sn++

)N of feasible parameters by

D+ :=
{

Λ ∈
(
Sn++

)N ∣∣∣∣∣ 1
n

N∑
i=1

Tr (Λi) ≤ 1
}
.
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Now, we have an inclusion of the form

∀Λ ∈ D+ : F =
N∑
i=1
E(Qi) ⊆ E

(
N∑
i=1

Q
1
2
i Λ−1

i Q
1
2
i

)
= F+(Λ) .

This parameterized outer approximation is tight, i.e., we have F =
⋂

Λ∈D+
F+(Λ) .

Note that Theorem 2.5 is more general than Theorem 2.4 in the sense that an application
of Theorem 2.5 with Λi := λiI yields the statement of Theorem 2.4.

Inner Approximations of Sums of Ellipsoids

In the next step we are looking for inner ellipsoidal approximations of an absolutely convex
set of the form F =

∑N
i=1 E(Qi) . Here, we follow the strategy which has been outlined

above, i.e., we start with a computation of the associated polar set:

F∗ =
[
N∑
i=1
E(Qi)

]∗
=

{
y ∈ Rn

∣∣∣∣∣ max
x∈
∑

i
E(Qi)

yTx ≤ 1
}

=
{
y ∈ Rn

∣∣∣∣∣
N∑
i=1

√
yTQiy ≤ 1

}
. (2.3.16)

In the next step, we proceed by computing the support function of the set F∗ planning to
find an outer approximation of the polar set. This support function is for all directions
c ∈ Rn given by

V ∗(c) := max
y

cT y s.t. y ∈ F∗ .

Here, we assume that the matrices Q1, . . . , QN ∈ Sn++ are invertible such that the
maximum exists. Using the above representation for F∗ the function V ∗(c) turns out to
be the optimal value of a second order cone program (SOCP). In order to write this SOCP
in standard form we introduce a slack variable x ∈ RN :

V ∗(c) = max
x, y

cT y s.t.


∑N
i=1 xi ≤ 1∥∥∥∥Q 1
2
i y

∥∥∥∥
2
≤ xi for all i ∈ {1, . . . , N} .
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48 ROBUST CONVEX OPTIMIZATION

As for example the point xi = 1
N+1 (with i ∈ {1, . . . , N} ) together with y = 0 yields

a strictly feasible point (Slater’s condition), we can express V ∗(c) via the following dual
second order cone program with variables µ ∈ R, χi ∈ Rn:

V ∗(c) = min
µ, χ1, ..., χN

µ s.t.


∑N
i=1Q

1
2
i χi = c

‖χi ‖2 ≤ µ for all i ∈ {1, . . . , N} .
As the matrices Qi are assumed to be invertible, we observe inductively that in the optimal
solution (µ∗, χ∗1, . . . , χ∗N ) of the above dual SOCP, all constraints must be active, i.e.,
we have

µ∗ = ‖χ∗1 ‖2 = . . . = ‖χ∗N ‖2 .

In other words, there exists orthogonal matrices S∗1 , . . . , S∗N ∈ Rn×n with STi Si = I

such that χ∗i = Siλ for all i ∈ {1, . . . , N} and some given common vector λ ∈ Rn with
‖λ‖ = µ∗. Using this change of variables, we can transform the above dual problem
further:

V ∗(c) = min
λ, S1, ..., SN

‖λ ‖2 s.t.


∑N
i=1Q

1
2
i Siλ = c

Si S
T
i = I for all i ∈ {1, . . . , N} .

Note that we may assume that the matrix of the form ∑N
i=1Q

1
2
i Si is invertible, as the set∑

i E(Qi) is assumed to be non-degenerate, i.e., we use that Qi � 0 for all i ∈ {1, . . . , n}.
Thus, we can define a positive definite matrix P (S1, . . . , Sn) ∈ Rn×n as

P (S1, . . . , Sn) :=
(

N∑
i=1

Q
1
2
i Si

)(
N∑
i=1

Q
1
2
i Si

)T
.

Using this notation, we find

V ∗(c) = min
λ, S1, ..., SN

√
cT [P (S1, . . . , Sn)]−1 c s.t. Si S

T
i = I . (2.3.17)

with i ∈ {1, . . . , N}. As this result holds for all vectors c, we can conclude that all
ellipsoids of the form E( [P (S1, . . . , Sn)]−1 ) are ellipsoidal outer approximations of the
set F∗ independent of how we choose the orthogonal matrices S1, . . . , SN . Thus, if we
take polar sets, we obtain an ellipsoidal inner approximation.
Theorem 2.6 (Ellipsoidal Inner Approximations): Let us first define the set of param-
eters D− ⊆ (Rn×n)N to be composed of sub-orthogonal matrices, i.e., we use a definition
of the form

D− :=
{
S ∈

(
Rn×n

)N ∣∣∣ Si STi � I for all i ∈ {1, . . . , N}
}
.
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The ellipsoid E(P (S1, . . . , Sn) ) is for every set of matrices S ∈ D− an inner
approximation of the set ∑N

i=1 E(Qi) , i.e., we have

∀S ∈ D− : F =
N∑
i=1
E(Qi) ⊇ E

( N∑
i=1

Q
1
2
i Si

)(
N∑
i=1

Q
1
2
i Si

)T  =: F−(S) .

Here, the matrices Q1, . . . , Qn ∈ Sn+ are not necessarily invertible. Finally, the inner
approximation is tight, i.e., we have F =

⋃
S∈D−

F−(S) .

Proof: In the case that the matrices Q1, . . . , QN are invertible, the statement follows
from equation (2.3.17) as the inclusion F∗ ⊆ E( [P (S1, . . . , Sn)]−1 ) implies

F = (F∗)∗ ⊇ E( [P (S1, . . . , Sn)]−1 )∗ = E(P (S1, . . . , Sn) )

for all orthogonal matrices S1, . . . , SN . Here, we can additionally use that the ellipsoid
E(P (S1, . . . , Sn) ) can only get smaller if we replace an orthogonal matrices Si with a
sub-orthogonal matrix.

Finally, it remains to be shown that the Theorem is also true if the matrices Q1, . . . , Qn
are not invertible. Here, the strategy is analogous to the proof of Theorem 2.4, i.e., we
can add small regularizations terms εI to the matrices Q1, . . . , Qn and verify that the
above inclusion holds in the limit sense for vanishing regularization ε→ 0 . �
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Chapter 3

Robust Nonconvex Optimization

3.1 Formulation of Semi-Infinite Optimization Problems

In this section we start with an introduction to nonlinear semi-infinite or min-max
optimization. Here, we are interested in robust counterpart problems of the form

min
x∈Rn

V0(x) s.t. Vi(x) ≤ 0 for all i ∈ {1, . . . ,m} , (3.1.1)

where the robust counterpart functions Vi : Rnx → R are of the form

Vi(x) := max
w∈W

Fi(x,w) .

with twice continuously differentiable functions F0, F1, . . . , Fn : Rnx×Rnw → R depending
on an optimization variable x ∈ Rnx and on an uncertain parameter w, which is bounded
by a compact set W ⊆ Rnw . The main difference to the considerations from the previous
chapter is that we do not require any convexity assumption on the functions Fi, i.e., we
have in general neither lower-level nor upper-level convexity. As mentioned, problems of
this form are usually called non-convex semi-infinite optimization problems as we could
reformulate the robust counterpart problem into a standard minimization problem if we
would allow to formulate infinitely many constraints. We also note that the set W is
assumed to be independent of x. In the case that the uncertainty set W can itself be
shaped by the optimization variable x, i.e., for the case that we have a generalized semi-
infinite optimization problem, we can in most of the practically relevant cases reformulate
it into a standard min-max problem with fixed uncertainty set by changing variables.

51
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52 ROBUST NONCONVEX OPTIMIZATION

Example 3.1: Let us consider an illustrative robust counterpart optimization problem of
the form (3.1.1) for the case that the objective function is given as F0(x,w) := x2

1 + x2
2

while the function

F1(x,w) := f1(x1 + w1)− (x2 + w2) = ex1+w1 − (x2 + w2)

denotes an uncertain constraint function. Here, the uncertainty is assumed to satisfy
‖w‖2 ≤ 1 . In other words, we are interested in a min-max problem of the form

min
x

x2
1 + x2

2 s.t. max
‖w‖2≤ 1

ex1+w1 − (x2 + w2) ≤ 0

In order to interpret this problem graphically, we define the nominally feasible set Fn ⊆ R2

as
Fn :=

{
x ∈ R2 | f1(x1)− x2 ≤ 0

}
The above min-max problem asks for a point x with minimal norm such that a ball with
radius 1 centered at the point x is completely contained in the nominally feasible set Fn
as visualized in the left part of Figure 3.1. Note that the problem is upper-level convex as
the objective F0 and the constraint function F1 are for all w convex functions in x (c.f.
Lemma 2.1). However, the lower level maximization problem of the form

max
‖w‖2≤ 1

ex1+w1 − (x2 + w2) (3.1.2)

is a non-convex optimization problem.

It is interesting to remark that for the special case in Example 3.1 every local maximizer of
the sub-problem is also a global maximizer. Intuitively, this can already be seen by looking
at Figure 3.1: the uncertainty ball seems to have a larger curvature than the e-function. In
order to show this mathematically, we directly generalize the above example for functions
of the form

F (x,w) = f(x1 + w1)− (x2 + w2) ,

where x ∈ Rn+1, x1 ∈ Rn, x2 ∈ R and x := (xT1 , x2)T . In this context, the uncertainty
vector w := (wT1 , w2)T ∈ Rn+1 is assumed to satisfy ‖w‖ = ‖w1‖22 + w2

2 ≤ 1.

Definition 3.1: Let f : Rn → R be a twice continuously differentiable function. Now, we
define a curvature function κ : Rn → R+ of the function f for all x1 ∈ Rn as the unique
solution of the LMI

κ(x) := argmin
κ≥ 0

κ s.t. f ′′(x) � κ
√

1 + ‖ f ′(x) ‖22
[
I + f ′(x)f ′(x)T

]
.
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FORMULATION OF SEMI-INFINITE OPTIMIZATION PROBLEMS 53

Here, f ′(x) ∈ Rn and f ′′(x) ∈ Sn denote the first and second order derivative of f ,
respectively.

The reason why this curvature function is useful in our context can be stated as follows:

Lemma 3.1: Let X ⊆ Rn be an open and convex set and Y := X+E(I) the Minkowski
sum of X and the unit ball E(I). Moreover, let f : Y → R be a twice continuously
differentiable function and κ : Y → R+ the associated curvature function given by
Definition 3.1. If we have κ(y) < 1 for all y ∈ Y , then the optimization problem

max
‖w‖2≤ 1

f(x1 + w1)− (x2 + w2) (3.1.3)

admits for all x1 ∈ X (and all x2 ∈ R) a unique local maximizer w∗(x), i.e., there cannot
be local maxima which are not global.

Proof: First of all, the constraint ‖w‖2 ≤ 1 must be active in the optimal solution of
the problem (3.1.3) – otherwise, we could keep w1 and make w2 smaller. In other words,
the optimization problem (3.1.3) is equivalent to an unconstrained optimization problem
of the form

max
w1

f(x1 + w1) −
(
x2 −

√
1− w2

1

)
.

Here, we can exclude maxima at the extreme points w1 = 1 or w1 = −1, as may use
f ′(x1 + w1) <∞ for any fixed x1 ∈ X, i.e., we only have to look for local maxima w∗1
which are inside the open interval (−1, 1). Consequently, we analyze the stationarity
condition

f ′(x1 + w1)− w1√
1− w2

1

= 0 ,

which can equivalently be written as

w1 = f ′(x1 + w1)√
1 + ‖f ′(x1 + w1)‖22

. (3.1.4)

The main idea of the proof is to verify that the equation

g(w1) := f ′(x1 + w1)√
1 + ‖f ′(x1 + w1)‖22

− w1 = 0
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54 ROBUST NONCONVEX OPTIMIZATION

admits at most one solution for w1. In order to show this, we compute the derivative g′
of the auxiliary function g with respect to w1 finding

g′(w1) = f ′′(y)√
1 + ‖f ′(y)‖22

− f ′(y)f ′(y)T f ′′(y)(
1 + ‖f ′(y)‖22

) 3
2
− I

=
[
I − f ′(y)f ′(y)T

1 + ‖f ′(y)‖22

]
f ′′(y)√

1 + ‖f ′(y)‖22
− I

Here, we have introduced the short hand y := x1 + w1 ∈ Y in order to simplify the
notation. Note that an application of the Sherman-Morrison formula yields

g′(w1) =
[
I + f ′(y)f ′(y)T

]−1 f ′′(y)√
1 + ‖f ′(y)‖22

− I

� κ(y)I − I ≺ 0 . (3.1.5)

In the last step, the definition of κ as well as the requirement κ(y) < 1 has been used. At
this point, the proof is complete, as the function g has a negative definite derivative on
the domain of our interest and consequently this function can have at most one root. �

Coming back to the special case from Example 3.1, we can compute the curvature function
κ for the e-function in order to illustrate the above Lemma. In this special case, we find

∀x ∈ R : κ(x) = ex

(1 + e2x)
3
2
≤ 2√

27
< 1 .

In other words, the curvature of the uncertainty ball, which is 1 in this example, is
larger than the curvature of the function f1, which is at most 2√

27 . Thus, the result of
Lemma 3.1 can be applied: we have proven that the non-convex lower-level maximization
problem (3.1.2) has exactly one unique local maximizer.

Example 3.2: Let us consider the min-max problem

min
x

(
x1 −

1
2

)2
+ x2

2 s.t.



0 ≥ max
‖w‖2≤ 1

3

1− (x1 + w1)2 − (x2 + w2)2

0 ≥ max
‖w‖2≤ 1

3

log (x1 + w1)− (x2 + w2)

0 ≥ max
‖w‖2≤ 1

3

− (x1 + w1)
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FORMULATION OF SEMI-INFINITE OPTIMIZATION PROBLEMS 55

Figure 3.1: Left: a visualization of the optimal solution to the semi-infinite optimization
problem from Example 3.1. Right: a visualization of the optimal solution to the semi-infinite
optimization problem from Example 3.2.

In contrast to the previous example, we have now lower level convexity while the upper
level problem turns out to be non-convex. The graphical interpretation is analogous to
the previous example. The optimal solution visualized in the right part of Figure 3.1,
where the uncertainty ball has the radius 1

3 . Finally, we note that despite the lower level
convexity we cannot explicitly apply the dual reformulation strategy as the dual function
cannot explicitly be written down, i.e., we would need functions which can theoretically
be constructed but which are usually not available in standard programming libraries. In
the optimal solution only the first two constraints are active.

Example 3.3: We consider a quadratic min-max problem of the form (with Σ ∈ S2
++)

min
x

x2 s.t. max
wTΣ−1w≤ 1

(x1 + w1)2 − (x2 + w2) ≤ 0 . (3.1.6)

This problem is upper level convex but not lower level convex. In the left part of Figure 3.2
the example is visualized for the case that the uncertainty set is ellipsoidal. Here, we use

Σ−1 :=
(

0.8 −0.6
−0.6 0.8

)
.

Note that the ellipsoid touches the boundary of the nominally feasible set twice illustrating
that there are two local maxima in the non-convex lower level problem. Recall that despite
the non-convexity of the lower level problem, the above min-max problem can be solved by
convex optimization applying the S-procedure as discussed in Section 2.2. If we introduce
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56 ROBUST NONCONVEX OPTIMIZATION

Figure 3.2: Left: a visualization of the optimal solution of the semi-infinite optimization
problem (3.1.6) from Example 3.3, which has been found by solving a semi-infinite
programming problem of the form (3.1.7). Right: a visualization of a sub-optimal,
conservative solution of the semi-infinite optimization problem (3.1.6), which has been
found by the linear approximation strategy as discussed within Example 3.5.

the short-hands
Q :=

(
1 0
0 0

)
and q(x1) :=

(
2x1
−1

)
we can compute the unique optimal solution of the min-max problem (3.1.6) numerically
by solving an equivalent semi-definite programming problem of the form

min
x,λ

x2 s.t.

 x2 − λ q(x1)T x1
q(x1) λΣ−Q 0
x1 0 1

 � 0 . (3.1.7)

The associated result x∗ ≈ (−0.35 , 1.08 )T corresponds to the center of the ellipsoidal
uncertainty region which is shown in the left part of Figure 3.2.

Example 3.4: Let us consider an example which is in contrast to the previous cases
non-convex in both the lower-level maximization as well as the upper level minimization
problem:

min
x
− x s.t. max

w2≤ 1
sin (xw ) ≤ 1

2
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FORMULATION OF SEMI-INFINITE OPTIMIZATION PROBLEMS 57

It is quite trivial to solve this min-max optimization explicitly: the optimal solution is at
(x∗, w∗) =

(
arcsin

(
1
2

)
, 1
)

. Nevertheless, it might be helpful to keep the above problem
as a simple guiding example in mind in order to verify and understand the following
considerations in a better way.

The four examples above are certainly not representable for the class of problems we are
addressing. These four examples are all rather simple. None of them looks hopeless or even
numerically unsolvable. On the other hand, we know only for the min-max problem from
Example 3.3 how to reformulate it explicitly into a “plain” convex optimization problem,
while the other three examples outline a class of problems which require both theoretical
and numerical techniques which are beyond the traditional framework of standard convex
formulations. Thus, we first ask the question whether we can replace the convexity
requirement with less restrictive assumptions on the functions Fi such that we can still
develop efficient and reliable optimization algorithms for the considered class of problems.
The main difficulty is that we always have to find global maximizers of the lower level
maximization problems as we cannot guarantee feasibility otherwise. This implies that
we cannot directly employ local search routines for the lower-level problem, which are
typically employed in the field of nonconvex optimization.

For the special type of semi-infinite optimization problems from Example 3.1, we have
seen that the curvature of the constraint function and objective can in some cases be
used to guarantee that a non-convex maximization problem has only one unique local
maximizer. However, we have also discussed within Example 3.3 that we might even
be able to find tractable reformulations of a robust optimization problem for which the
non-convex lower-level problem has two or more global maxima in the optimal solution.
We propose to require an assumption on the second derivatives of the functions Fi:

Assumption 3.1: Let us assume that we have for each i ∈ {0, . . . , n} a twice continuously
differentiable and non-negative function λi : Rnx → R+ which satisfies the inequality

∀w ∈W : λmax

(
∂2

∂w2Fi(x,w)
)
≤ 2λi(x) , (3.1.8)

i.e., the maximum eigenvalue of the Hessian of Fi with respect to w is for all w ∈ W
bounded by the function 2λi.

Note that there exist numerical techniques from the field of global optimization [27, 99, 181],
which are able to provide interval bounds on the eigenvalues of the Hessian matrix of a
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58 ROBUST NONCONVEX OPTIMIZATION

given function as required in the above assumption. Nevertheless, the above assumption is
still questionable, as it is in practice often not clear how we can obtain such functions λi if
the suggested global numerical interval methods are too expensive to be applied. However,
once we accept this assumption, we are able to develop efficient, derivative based robust
optimization algorithms for the case nw � 1. This is the aim of this and the following
Chapter 4. In the following considerations the case of lower level convexity will always
trivially be included, as we can employ the trivial choice λi(x) = 0 if all functions Fi are
concave in w for all x.

Finally, we note that the above assumption can be generalized by requiring the existence
of a twice continuously and matrix valued positive semi-definite function Λi : Rnx → Sn+
which satisfies the inequality

∀w ∈W : ∂2

∂w2Fi(x,w) � 2 Λi(x) . (3.1.9)

The following consideration can be extended to this case by rescaling the variable w if
necessary.

3.2 Convexification of Robust Counterparts

Due to the fact that the lower level maximization problems must be solved globally,
the exact robust counterpart functions Vi(x) within the problem formulation (3.1.1) can
often only approximately be evaluated, as it is typically very expensive to solve non-
convex optimization problems globally. In the following, we concentrate on convexification
methods which can be employed in order to replace the functions Vi with a conservative
approximation. In the following section, we review linearization techniques which have been
developed in [71, 123, 133, 174]. After this, more advanced convexification techniques
which are based on Lagrangian duality are discussed.

Approximate Robust Counterparts based on Linearization

Note that Assumption 3.1 enables us to construct conservative approximations of the
robust counterpart functions Vi in the optimization problem (3.1.1). One method to
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CONVEXIFICATION OF ROBUST COUNTERPARTS 59

obtain such an approximation is linearization. Employing a Taylor expansion we find

Vi(x) = max
w∈W

Fi(x,w)

≤ max
v,w∈W

Fi(x, 0) + ∂Fi(x, 0)
∂w

w + 1
2w

T

(
∂2

∂w2Fi(x, v)
)
w

≤ max
w∈W

Fi(x, 0) + ∂Fi(x, 0)
∂w

w + λi(x)wTw . (3.2.1)

Note that the uncertainty set W can for example be modeled as an ellipsoidal set. In
order to briefly discuss this case, we assume here for simplicity that the uncertainty set is
a unit ball:

w ∈ E(I) :=
{
v ∈ Rnw | vT v ≤ 1

}
.

For theoretical considerations, this assumption is not excessively restrictive. For example,
if we have a set W for which we can find a twice continuously differentiable and surjective
map ϕ(·) : E(I)→W , we can always reformulate the problem replacing in the functions
F0, F1, . . . , Fn the variable w by ϕ(w). However, it is also possible to model W as an
intersection of ellipsoids – we will later come back to this case.

Now, for the case W = E(I) we can explicitly solve the convex problem (3.2.1) finding
the overestimate (compare also with Example 2.1):

Vi(x) ≤ Fi(x, 0) +
∥∥∥∥∂Fi(x, 0)

∂w

∥∥∥∥
2

+ λi(x) . (3.2.2)

Recall that ‖ · ‖2 : Rnw → R denotes the Euclidean norm.

Definition 3.2: We define the best conservative first order approximation Ji : Rnx → R
associated with the i-th lower level maximization problem by

∀x ∈ Rnx : Ji(x) := Fi(x, 0) +
∥∥∥∥∂Fi(x, 0)

∂w

∥∥∥∥
2

+ λi(x) . (3.2.3)

The above definition is motivated by the observation that once we linearize the function
Fi at w = 0 allowing neither to compute the gradient of Fi at any other point nor to
compute any second order term, Ji is the smallest conservative approximation that we
can obtain by using Assumption 3.1 only without having any further information on the
function Fi.
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60 ROBUST NONCONVEX OPTIMIZATION

Note that e.g. in [71, 123, 133, 174] the functions Ji have been used suggesting to solve
the approximate robust counterpart problem

min
x∈Rnx

J0(x)

subject to Ji(x) ≤ 0 for all i ∈ {1, . . . , n} (3.2.4)

instead of the original exact robust counterpart problem (3.1.1). In this context, we
should be aware of the fact that we need to compute at least first order derivatives of the
functions Fi in order to evaluate the associated functions Ji. As originally proposed in [71],
it is desirable to use automatic differentiation [108, 112] for that purpose. One of the
motivations for automatic differentiation is that the accuracy of numerical differentiation
is often not sufficient, as for example an exact Hessian sequential quadratic programming
method applied to problem (3.2.4) would already require to evaluate third order derivatives.
Moreover, we have to distinguish two cases:

• The first case is that we have only a few uncertain variables nw, but many constraint
functions m� nw. In this situation, it is usually better to use the forward mode of
automatic differentiation in order to compute the terms ∂F (x,0)

∂w which are needed
for the evaluation of the functions Ji.

• In the second case, if we have m � nw, it is typically more efficient to use the
backward mode of automatic differentiation, such that only m backward sweeps are
needed to compute the required partial derivative ∂F (x,0)

∂w .

The following example discusses an application of the linear approximation strategy but
also outlines its conservatism and limits of accuracy:

Example 3.5: Let us once more consider the problem from Example 3.3 where the robust
worst-case constraint is of the form

max
wTQ−1w≤ 1

(x1 + w1)2 − (x2 + w2) ≤ 0 . (3.2.5)

Denoting the Cholesky decomposition of the matrix Q−1 as RRT = Q−1, the approximate
counterpart formulation based on linearization can be written as

min
x

x2 s.t. J1(x) = x2
1 − x2 +

∥∥∥∥∥
(

2R1,1x1 −R1,2
−R2,2

)∥∥∥∥∥
2

+R2
1,1 ≤ 0 .
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Using the same values as in Example 3.3, we find the solution x̂ ≈ (−0.27 , 1.49 ). As
visualized in the right part of Figure 3.2, the solution is robustly feasible, as the ellipsoid is
completely contained in the nominally feasible paraboloid. However, recall that the exact
solution of the robust counterpart problem is at x∗ ≈ (−0.35 , 1.08 ) (cf. the left part of
Figure 3.2). Thus, we have to pay 38% of optimality if we apply the linear approximation
comparing the optimal value with the exact robust solution from Example 3.3.

The above example shows that the linear approximation strategy can lead to a tractable
way of formulating an approximate robust counterpart problem. If we would know that we
cannot do better, we could now accept this linear approximation strategy as a practical
way to solve the robust optimization problem conservatively. However, the min-max
optimization problem from Example 3.3 can be treated in a much more elegant way
by reformulating it into a simple convex semi-definite programming (SDP) problem.
Consequently, we have to ask whether we can exploit Assumption 3.1 in a more efficient
way than the linearization strategy does. One way would be to consider second order Taylor
expansions of the functions Fi in the uncertainty w such that we can cover the specific case
in Example 3.3. However, in general second order derivatives are expensive to compute.
In particular, if we want to solve the robust counterpart problem with derivative based
optimization algorithms, we need derivatives of order three or even higher. In the following
section we will discuss a strategy which avoids the limitations of the Taylor expansion
based approaches, which leads to a better conservative approximation of the worst case,
and which is exact for the case that we deal with quadratic forms as in Example 3.3.

A Worst Case Approximation based on the Dual Lagrange Function

In this section, we pick any i ∈ {0, . . . , n} and ask once more the question how we can
compute an upper bound on the function Vi(x) which is needed in robust counterpart
formulations. As in the previous consideration, we still assume that W = E(I) is the unit
ball. Recall that our only information about the function Fi is that Assumption 3.1 holds.

Let us consider the dual Lagrange function Di : Rnx ×R+ → R, which is associated with
the lower level maximization problem:

Di(x, λi) := max
wi

Gi(x, λi, wi)

with Gi(x, λi, wi) := Fi(x,wi)− λiwTi wi + λi . (3.2.6)
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62 ROBUST NONCONVEX OPTIMIZATION

Note that Di(x, λi) is an upper bound on Vi(x) for all λi ∈ R++, i.e., we have

∀x ∈ Rnx : Vi(x) ≤ inf
λi>0

Di(x, λi) .

For the case that the above inequality holds with equality we say that the strong duality
condition is satisfied. This is for example the case if Fi is strictly concave in w.

So far, we have not solved the problem: we still need to solve the optimization
problem (3.2.6) globally. However, an interesting observation is that we have

∀x ∈ Rnx : Mi(x) := inf
λi>λi(x)

Di(x, λi) ≥ inf
λi>0

Di(x, λi) , (3.2.7)

since we assume that λi is a non-negative function. Note that Di(x, λi) is for λi ≥ λi(x)
easier to evaluate in the sense that the function Gi(x, λi, ·) is in this case concave. Thus,
we know that every local maximum of the function Gi(x, λi, ·) is also a global maximum
as long as the condition λi ≥ λi(x) is satisfied.

In order to get used to the notation, we note that the function Mi can also be written as

Mi(x) = max
wi

Hi(x,wi) s.t. ‖wi‖22 ≤ 1 , (3.2.8)

where the functions Hi : Rnx × Rnw → R are defined as

Hi(x,wi) := Gi(x, λ(x), wi) for all i ∈ {0, . . . , n}.

Note that equation (3.2.8) is equivalent to the definition (3.2.7) of Mi. This can directly
be seen by shifting the multiplier λi by λi(x). Recall that the main motivation for this
construction is that the function Hi is concave in wi.

Lemma 3.2: The function Mi is an upper bound on Vi which can never be more
conservative than the best linear approximation Ji. Hence, we have

∀x ∈ Rnx : Vi(x) ≤ Mi(x) ≤ Ji(x) .

Proof: Note that by a Taylor expansion of the function Gi there exists a v ∈ Rnw such
that

Gi(x, λi, wi) = Fi(x, 0) + ∂

∂w
Fi(x, 0)wi + 1

2w
T
i

(
∂2

∂w2Fi(x, v)− 2λiI
)
wi + λi .
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For the case λi > λ(x) the function Gi is strictly concave and we can maximize over wi
finding that for all x ∈ Rnx and all λi > λ(x) the estimate

max
wi

Gi(x, λi, wi) ≤ max
v

Fi(x, 0)

+1
2

∥∥∥∥∥∥
(

2λiI −
∂2

∂w2Fi(x, v)
)− 1

2 ∂Fi(x, 0)
∂w

T
∥∥∥∥∥∥

2

2

+ λi

≤ Fi(x, 0) + 1
4

1(
λi − λ(x)

) ∥∥∥∥∂Fi(x, 0)
∂w

∥∥∥∥2

2
+ λi (3.2.9)

is satisfied. Now, it follows that

Mi(x) = inf
λi>λi(x)

Di(x, λi)

(3.2.9)
≤ inf

λi>λi(x)
Fi(x, 0) + 1

4
1(

λi − λ(x)
) ∥∥∥∥∂Fi(x, 0)

∂w

∥∥∥∥2

2
+ λi

AM-GM= Fi(x, 0) +
∥∥∥∥∂Fi(x, 0)

∂w

∥∥∥∥
2

+ λi(x)

= Ji(x) .

As the above consideration holds for all x ∈ Rnx it follows with (3.2.7) that we have

∀x ∈ Rnx : Vi(x) ≤ Mi(x) ≤ Ji(x) ,

which is the statement of the Lemma. �

Note that for the case that Fi is already concave in w, we have Mi = Vi , i.e., there is no
duality gap and consequently no conservatism introduced. In order to see that the function
Mi might also beyond concavity coincide with the exact function Vi, we formulate once
more the tight version of the S-procedure for quadratic forms (cf. Theorem 2.1):

Lemma 3.3: If the function Fi is a not necessarily concave quadratic in w given in the
form

Fi(x,w) = wTQ(x)w + q(x)Tw + s(x)
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with λi(x) := max { 0 , λmax(Q(x)) } and Q(x) symmetric, then the approximation
function Mi is exact, i.e., we have

∀x ∈ Rnx : Vi(x) = Mi(x) .

Proof: As we have only one single ellipsoidal uncertainty constraint, in this case the
ball W = E(I), the Lemma follows immediately from the tight version of S-procedure. In
other words, we can directly apply Theorem 2.1. �

Example 3.6: Let us once more regard Example 3.4. Here, the uncertain constraint
function is given by F1(x,w) = sin(xw ). Thus, the exact robust counterpart function
is given by

V1(x) =
{

sin( |x| ) if |x| ≤ π
2

1 otherwise.
In order to apply our technique, we first need a Hessian upper bound, which is given by

λ1(x) :=
{

x2

2 sin( |x| ) if |x| ≤ π
2

x2

2 otherwise.

Now, the associated best linear approximation can be written as

J1(x) =
{
|x|+ x2

2 sin( |x| ) if |x| ≤ π
2

|x|+ x2

2 otherwise.

In Figure 3.3 the functions V1 and J1 are visualized as a dashed and a dotted line,
respectively. The corresponding Lagrangian based overestimation M1 is shown as a solid
line. As we can see from Figure 3.3, we have V1(x) = M1(x) for all x with |x| / 0.86 .

The above example illustrates that the relation V (x) = M(x) does in general not globally
hold. Nevertheless, in some cases equality can be shown within a local region. Let us
formalize this idea within the following Lemma:

Lemma 3.4: Let X ⊆ Rnx be a subset of Rnx as well as W := {w | wTw ≤ γ2} and

Gi(x, λ(x), w) := Fi(x,w)− λi(x)wTw + γ2λi(x) .

If for all x ∈ X the function Gi(x, λ(x), ·) does not take a maximum on the open set
int(W ) denoting the interior of W , then there is no duality gap. In other words, we have
in this case

∀x ∈ X : Vi(x) = Mi(x) := inf
λi>λi(x)

max
wi

Gi(x, λi, wi) .
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CONVEXIFICATION OF ROBUST COUNTERPARTS 65

Figure 3.3: A visualization of the robust counterpart function V1 (black dashed line) from
Example 3.6, the associated best linear approximation function L1 (blue dotted line),
as well as the dual Lagrangian based approximation function M1 (red solid line). Note
that we have V1(x) ≤ M1(x) ≤ J1(x) for all x ∈ R and V1(x) = M1(x) for all x with
|x| / 0.86 .

Moreover, if X is compact and ∂
∂wF (x, 0) 6= 0 for all x ∈ X then there exists a γ2 > 0

such that the above condition is satisfied.

Proof: If the function Gi(x, λ(x), ·) does not take a maximum in the interior int(W ) of
the set W , it must take a maximum w∗ on the boundary, where we have

Gi(x, λ(x), w∗) = Fi(x,w∗)

for all x ∈ X. Thus, we can conclude that the function Mi(x) is in this case coinciding
with Vi(x). The second statement of the Theorem follows from the stationarity condition

∂

∂w
Gi(x, λi(x), w∗) = ∂

∂w
Fi(x,w∗)− 2λi(x)w∗ ,

which must be satisfied at every maximizer of Gi(x, λi(x), ·) which is in the interior of W .
However, if γ2 is sufficiently small and ∂

∂wFi(x, 0) 6= 0 for all x ∈ X then it follows from
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66 ROBUST NONCONVEX OPTIMIZATION

the continuity of the function ∂
∂wFi(x, ·) that we cannot satisfy the above stationarity

condition. �

Summarizing the above result in words, we can state that under some mild regularity
conditions, the approximation Mi is locally exact, i.e., if the uncertainty set is sufficiently
small. Note that we can also find a global upper bound on the duality gap:

Theorem 3.1 (An Upper Bound on the Duality Gap): With the same assumptions
as in Lemma 3.4, i.e., W := {w | wTw ≤ γ2}, we define a radius γi(x) as

γi(x) := min
w∈W

∥∥∥∥∥∥
(
∂2Fi(x,w)

∂w2 − 2λi(x)I
)−1

∂Fi(x, 0)
∂w

∥∥∥∥∥∥
2

.

The approximation function Mi always satisfies an inequality of the form

|Mi(x)− Vi(x) | ≤ λi(x) max
{

0, γ2 − γi(x)2
}
.

In particular, if we have γi(x) ≥ γ , then there is no duality gap. Moreover, the term
λi(x) γ2 is always an upper bound on the approximation error |Mi(x)− Vi(x) |.

Proof: Note that we can directly assume that there exists a stationary point w∗ ∈ W
which satisfies

∂

∂w
Gi(x, λi(x), w∗) = ∂

∂w
Fi(x,w∗)− 2λi(x)w∗ .

If there is no such point, we can use Lemma 3.4 to show that Mi(x) − Vi(x) = 0.
Otherwise, we can employ a Tailor expansion of the above stationarity condition as well
as the relation

|Mi(x)− Vi(x) | = λi(x)
(
γ2 − (w∗)2

)
,

which yields the statement of the Theorem. �

The above theorem is important in the sense that it yields an upper bound of the
conservatism which is introduced by employing the approximate robust counterpart Mi(x)
instead of the exact value Vi(x). For special classes of functions tighter sub-optimality
estimates are possible.
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CONVEXIFICATION OF ROBUST COUNTERPARTS 67

Remark 3.1 (Limits of the Approximation): In the worst case, Theorem 3.1 yields the
upper bound λi(x) γ2 . There are examples where this worst case occurs: let us consider
the case that the function Fi(x,w) with scalar uncertainty w has the unfortunate form
Fi(x,w) = w4 − w2 with γ = 1. In this case, we find that the Hessian of Fi is given by

∂2

∂w2Fi(x, v) = 12w2 − 1 .

Consequently, the smallest upper bound on the Hessian matrix is given by λi(x) := 11
finding Vi(x) = 0 and Mi(x) = Ji(x) = 11. For the case that functions Fi are - as
above - polynomial in w there exist convexification techniques which do not suffer from
conservatism but require to reformulate the polynomial maximization problem via linear
matrix inequalities [116, 148, 215]. As such techniques are typically very expensive for
larger dimensions nw, we do not review them here, but refer to the work of Lasserre [149]
and Parrilo [184] for more details.

Finally, we are interested in solving an approximate robust counterpart problem of the
form

min
x∈Rnx

M0(x)

subject to Mi(x) ≤ 0 for all i ∈ {1, . . . , n} . (3.2.10)

Here, it cannot be recommended to solve the above problem with a standard nonlinear
program (NLP-) solver, as evaluations of the functions Mi are expensive. Recall
equation (3.2.8) where these functions are given as the optimal values of the maximization
problems

Mi(x) = max
wi

Hi(x,wi) s.t. ‖wi‖22 ≤ 1 .

Moreover, due to possible active set changes, the functions Mi are in general not
differentiable in x. In the following, we plan to develop an algorithm to solve
problem (3.2.10) by taking the min-max structure explicitly into account. This algorithm
will be worked out in this and the following chapter.

Generalizations for other Types of Uncertainty Sets

So far our analysis was based on the assumption that the uncertainty set is a simple ball in
Rnw , which covers already many cases, for example ellipsoidal sets, if we allow to re-scale
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68 ROBUST NONCONVEX OPTIMIZATION

the variable w. However, the Lagrangian dual relaxation strategy transfers in principle
also for uncertainty sets which are modeled as intersections of ellipsoids, i.e., for the case
that the uncertainty set is of the more general form

W =
{
w ∈ Rnw

∣∣∣ (w − σj)T Σj (w − σj) ≤ 1 with j ∈ {1, . . . , N}
}
,

where the matrices Σ1, . . . ,ΣN ∈ Snw+ and vectors σ1, . . . , σN ∈ Rnw are assumed to be
given. The argumentation is in principle analogous to the previous section, but the dual
function Di : Rnx × RN+ → R is now given by

Di(x, λi) := max
wi

Gi(x, λi, wi)

with Gi(x, λi, wi) := Fi(x,wi)−
N∑
j=1

[
λi,j (wi − σj)T Σj (wi − σj)− λi,j

]
.

In this case, it is most consistent to assume that we have a twice continuously and matrix
valued positive semi-definite function Λi : Rnx → Snw+ which satisfies the inequality

∀w ∈W : ∂2

∂w2Fi(x,w) � 2 Λi(x) ,

such that the function Gi is known to be concave in w for all x and for all λi ∈ RN+ which
satisfy the semi-definite inequality

Λi(x) �
N∑
j=1

λi,jΣj .

Now, we define the approximate robust counterpart function Mi : Rnx → R as

∀x ∈ Rnx : Mi(x) := inf
λi

Di(x, λi) s.t. Λi(x) �
N∑
j=1

λi,jΣj .

Note that this approximate robust counterpart function also satisfies

∀x ∈ Rnx : Mi(x) ≥ inf
λi>0

Di(x, λi) ≥ Vi(x) ,

which shows that Mi is an upper bound on the exact robust counterpart function Vi. A
difference to the previous section is that it is now more difficult to find a priori bounds on
the duality gap, i.e., the level of conservatism which is introduced by exchanging the exact
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CONVEXIFICATION OF ROBUST COUNTERPARTS 69

robust counterpart functions with their approximations Mi. However, for some special
cases, where the function Fi is a quadratic form and the ellipsoids have a common center,
i.e., σ1 = . . . = σN , upper bounds on the duality gap are known, as for example the
argumentation of Nemirovski, Roos, and Terlaky [176] can be transferred.

If we employ the above framework, the original non-convex min-max problem can be
approximated by a lower level convex min-max problem of the form

min
x,λ≥0

max
w0

G0(x, λ0, w0)

s.t.
{

0 ≥ max
wi

Gi(x, λi, wi)

0 � Λi(x)−
∑N
j=1 λi,jΣj for all i ∈ {1, . . . , n} .

(3.2.11)

Recall that the function Gi are concave in w, whenever i ∈ {0, . . . , n} while the pair
(x, λi) is a feasible point of problem (3.2.11).

Remark 3.2 (Box Constraints): Note that the above consideration includes the
important case that the uncertainty set is a box constraint, as we may choose N := nw ,
σj := 0 , and Σj := eje

T
j , with ej being the j-th unit vector in Rnw with j ∈ {1, . . . , N}.

If we assume additionally that the given Hessian upper bound Λi(x) is diagonal, the semi-
definite inequalities of the form

0 � Λi(x)−
N∑
j=1

λi,jΣj

can equivalently be imposed as a standard inequality for the diagonal elements, as all
non-diagonal entries of the matrices Σi and Λi(x) are equal to zero in this case. Note that
such Lagrangian based relaxation strategies for box constrained uncertainties have been
suggested in [100], where the so-called α-BB method is introduced. Note that in [100]
the convexification method is combined with a branch-and-bound strategy and applied in
the context of generalized semi-infinite programming for the case nw = 1, i.e., for the
case that W is a one dimensional interval. In this context, we also refer to [179], where
the problem of maximizing a non-convex quadratic over a box is analyzed. More generally,
we have the upper bound

∀x ∈ Rnx : ‖Mi(x)− Vi(x) ‖ ≤ Tr
(

Λi(x)
)

in the case that the uncertainty is a unit box. This can be proven by a transfer of the
argumentation in Theorem 3.1.
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70 ROBUST NONCONVEX OPTIMIZATION

3.3 Necessary and Sufficient Optimality Conditions

In this section we are interested in both necessary and sufficient optimality conditions for
min-max optimization problems of the form

min
x∈Rnx

max
w0∈B

H0(x,w0)

subject to max
wi∈B

Hi(x,wi) ≤ 0 for all i ∈ {1, . . . , n} . (3.3.1)

This problem has in principle the same form as the generalized robust counterpart
problem (3.1.1), but we have switched our notation in order to make clear that we
will from now on work with the following assumption:

Assumption 3.2 (Lower Level Convexity): We assume that the functions H0, . . . ,Hn

are not only twice continuously differentiable but also (for all x ∈ Rnx) concave in w.
Moreover, we assume that the set B is a convex set of the form

B := {w ∈ Rnw | B(w) ≤ 0} ,

where the function B : Rnw → RnB is twice continuously differentiable and component-
wise convex in w.

In other words, we assume lower level convexity. Recall from the last section that such a
convex set B can be obtained by taking the convex hull of the original uncertainty set
W while the function H0, . . . ,Hn are concave over-estimators of the original functions
F0, . . . , Fn. In this context, we might have the examples

Bball (w) = ‖w‖22 − 1 and Bbox (w) =
(
w − w
w − w

)
(3.3.2)

from the previous section in mind.

Definition 3.3: A point (x∗, w∗) is said to be a local min-max point if the components
of the variable w∗ := (w∗0, . . . , w∗n) are global maximizers of the given concave functions
H0(x∗, ·), . . . ,Hn(x∗, ·) subject to w0, . . . , wn ∈ B while x∗ is a local minimizer of
problem (3.3.1).
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NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS 71

First Order Necessary Conditions

Let us start with a trivial but important observation: if we consider an unconstrained
min-max problem of the form

min
x

max
w

H(x,w)

with a function H(x, ·) that is assumed to be strictly concave in w for all x, then a local
min-max point (x∗, w∗) satisfies necessarily the stationarity conditions

∂

∂x
H(x∗, w∗) = 0 as well as ∂

∂w
H(x∗, w∗) = 0 . (3.3.3)

Here, the second equation, i.e., the stationarity with respect to w, is easy to verify. In
order to prove also the other equation we denote with w∗(x) := argmax

w
H(x,w) the

parameterized solution of the lower level maximization problem which is differentiable in x,
as we assume strict concavity (implicit function theorem). Consequently, the stationarity
condition for the upper level problem can be written as

0 = d
dx H(x,w∗(x))

= ∂

∂x
H(x∗, w∗) + ∂

∂w
H(x∗, w∗)︸ ︷︷ ︸

= 0

∂

∂x
w∗(x) = ∂

∂x
H(x∗, w∗) .

Note that the first order necessary optimality conditions (3.3.3) for the unconstrained
case would read exactly the same if we would regard min-min problems. In standard
unconstrained optimization problems we are searching for stationary points which are
minima (or maxima) while for min-max problems we are searching for stationary points
which are saddle points. Thus, the first order necessary optimality conditions for a min-max
problem are exactly the same as if we had a min-min problem. We can only see a difference
if we formulate second order sufficient conditions. Thus, at least in the unconstrained case,
we can solve a min-max problem locally in the same way as we would solve a standard
minimization problems: we can apply Newton-type methods in order to solve the necessary
stationarity equations (3.3.3) numerically.

In Chapter 2 we have discussed strategies to re-formulate a min-max or robust counterpart
problem as a standard minimization problem. For example, the robust counterpart of a
linear program (LP) with affine polytopic uncertainty can be reformulated as a standard LP,
or an LP whose uncertain coefficients are bounded within an ellipsoid, can be formulated
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72 ROBUST NONCONVEX OPTIMIZATION

as an SOCP. This type of reformulation strategies were based on the idea to replace
the lower level maximization problem by its dual assuming that the dual optimization
problem can be worked out explicitly. The reformulation has the advantage that existing
optimization algorithms can directly be applied. However, we might also ask whether
we can solve a min-max problem directly developing a tailored min-max optimization
algorithm, which does not require an explicit reformulation of the problem. The aim of
the following consideration is to discuss first order necessary optimality conditions for
constrained min-max problem, which will later be exploited by an algorithm.

Note that Assumption 3.2 enables us to equivalently replace the condition “w ∈ B
maximizes H(x∗, w)“ (with x∗ being a local minimizer of (3.3.1)) by the first order KKT
conditions of the form

0 = ∂

∂w
Lj(x∗, w∗j , λ∗j )

0 ≥ B(w∗j ) (3.3.4)

0 ≤ λ∗j

0 =
n∑
k=0

λTkBk(w∗k)

for all j ∈ {0, . . . , n}. Here, we have used the notation

Lj(x,w, λ) := Hj(x,w)− λTB(w)

to denote the Lagrangian Lj : Rnx × Rnw × RnB → R which is associated with the j-th
lower level concave maximization problem. Note that this argumentation is still applicable,
if we only know that every local maximizer must be global while the function Hi is not
necessarily concave in w (cf. Example 3.1).

In this context, we make the assumption that at least the Mangasarian-Fromovitz constraint
qualification (MFCQ) for the lower level maximization problems holds such that the
existence of the multipliers λ∗j can be guaranteed. In this case, the KKT conditions (3.3.4)
are both necessary and sufficient to guarantee that w∗ denotes the maximizers of
the concave lower level problems. Under the stronger linear independence constraint
qualification (LICQ) λ∗ is also unique. Following the classical framework [222, 223], we
introduce two other assumptions on the maximizers w∗j of the lower level problems: first
we assume that the strict complementarity condition (SCC) is satisfied, i.e., we assume
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NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS 73

(i ∈ {0, . . . , n})

B(w∗i )− λ∗i < 0 (3.3.5)

at the local min-max point (x∗, w∗) of our interest. And second, we assume that the
second order sufficient condition (SOSC)

∀pi ∈ Ti \ {0} : pTi

(
∂2

∂w2
i

Li(x∗, w∗i , λ∗i )
)
pi < 0 (3.3.6)

is satisfied, where the set Ti is defined as

Ti :=
{
p ∈ Rnw | ∂

∂w
Bi,act(w∗)p = 0

}
. (3.3.7)

Here, Bi,act denotes the active constraint components of the function B in the i-th lower
level maximization problem.

Now, we use the language from the semi-infinite programming literature [223]:

Definition 3.4: A point w∗ is nondegenerate if it satisfies the linear independence
constraint qualification (LICQ), the strict complementarity condition (SCC), as well
as the second order sufficient optimality condition (SOSC) for all lower level maximization
problems in (3.3.1).

The corresponding assumption that a point w∗ is nondegenerate is in the context of
semi-infinite programming also known under the name reduction ansatz [223, 118]. It
can be used to guarantee that the primal and dual solution ŵj(x) and λ̂j(x) of the j-th
parameterized lower level problems of the form

min
wj∈B

Hj(x,wj) (3.3.8)

can be regarded as differentiable functions in x. In fact, if w∗j = ŵj(x∗) is a non-degenerate
maximizer, the functions ŵj and λ̂j exist in an open neighborhood Dx ⊂ Rnx of x∗ and
are differentiable in this neighborhood Dx . This is a well-known result [199, 200] which
follows immediately from the implicit function theorem.

In the next step, we need to take care of the upper level minimization problem. In order
to analyze KKT-points, we introduce the following definitions:
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74 ROBUST NONCONVEX OPTIMIZATION

Definition 3.5: We say that a point (x,w) satisfies the upper level (or extended)
Mangasarian-Fromovitz constraint qualification (EMFCQ) if there exists a vector ξ ∈ Rnx
with

∂

∂x
Hk(x,w) ξ < 0 for all k ∈ A . (3.3.9)

Here, A := { k | Hk(x,w) = 0 } denotes the active set of the higher level minimization
problem. Moreover, we say that (x,w) satisfies the upper level (or extended) linear
independence constraint qualification (ELICQ) if the vectors

∂

∂x
Hi(x,w) with i ∈ A (3.3.10)

are linearly independent from each other.

The result of the following theorem has been proven in [135] (without even using the
above notation of nondegenerate maximizers) in a more general form, where first order
optimality conditions for generalized semi-infinite programming problems are discussed.
Concerning optimality conditions in semi-infinite programming we also refer to the earlier
work in [118, 119]. For our numerical purposes, we summarize these existing results in a
much less general form. This enables us to provide a quite concise proof of the following
result:

Theorem 3.2 (First Order Optimality Conditions): Let (x∗, w∗, λ∗) be a local min-
max solution of the problem (3.3.1) with w∗ being a nondegenerate maximizer of the
lower level concave maximization problems at x∗ and λ∗ the associated dual solution.
Now, the following statements hold:

1. If (x∗, w∗, λ∗) satisfies the upper level MFCQ condition, then there exists a multiplier
χ∗ ∈ Rn such that the first order KKT-type conditions

0 = ∂
∂xK(x∗, w∗, χ∗) 0 = ∂

∂wLj(x
∗, w∗j , λ

∗
j )

0 ≥ Hi(x∗, w∗i ) 0 ≥ B(w∗j )
0 ≥ χ∗i 0 ≤ λ∗j

0 =
∑n
k=1 χ

∗
kHk(x∗, w∗k) 0 =

∑n
k=0 λ

∗
k
TB(w∗k)

(3.3.11)

are satisfied for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Here, we use the notation

K(x,w, χ) := H0(x,w0)−
n∑
k=1

χkHk(x,wk)
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in order to define the upper level Lagrange function.

2. If (x∗, w∗, λ∗) satisfies also the upper level LICQ condition, then the associated
multiplier χ∗ in the necessary conditions (3.3.11) is unique.

Proof: Due to the complementarity relation for the lower level maximization problems we
have

∀x ∈ Dx : Hj(x, ŵj(x)) = Lj(x, ŵj(x), λ̂j(x)) ,

where ŵj and λ̂j denote the parameterized dual solution of the lower level maximization
problems as a function in x ∈ Dx as introduced above. Thus, the min-max problem (3.3.1)
is locally equivalent to the following auxiliary problem

min
x∈Dx

L0(x, ŵ0(x), λ̂0(x))

s.t. Li(x, ŵi(x), λ̂i(x)) ≤ 0 for all i ∈ {1, . . . , n} .
(3.3.12)

Using the optimality and feasibility condition for the lower level maximizer ŵj(x∗), we find

d
dxLj(x

∗, ŵj(x∗), λ̂j(x∗)) = ∂

∂x
Lj(x∗, w∗j , λ∗j )

+ ∂

∂w
Lj(x∗, w∗j , λ∗j )

∂ŵj(x∗)
∂x

−Bj,act(w∗j )
∂λ̂j(x∗)
∂x

= ∂

∂x
Hj(x∗, w∗j ) .

for all j ∈ {0, . . . , n}. In the last step we have used the stationarity conditions

∂

∂w
Lj(x∗, w∗j , λ∗j ) = 0 as well as the relation Bj,act(w∗j ) = 0

which holds by the definition for the active constraints. Thus, the upper level MFCQ
(or upper level LICQ) condition from Definition 3.5 boils down to the MFCQ (or LICQ)
condition for the auxiliary problem (3.3.12). The statements of the theorem are now
equivalent to the standard KKT theorem for problem (3.3.12) under the MFCQ and LICQ
condition, respectively. �

Remark 3.3: The above proof can be generalized for the case that the lower level problems
comprise not only convex inequalities but also linear equalities. Furthermore, we could
consider the case that problem (3.3.1) has additional equality and/or inequality constraints
which only depend on x etc. Please note that such generalizations are straightforward
and omitted here for the ease of notation.
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In the above form, the first order necessary optimality conditions for min-max problems
should be easy to remember: we first write down the first order KKT conditions for
the maxima by fixing x∗, which yields the right-hand column in conditions (3.3.11), and
second we write down the first order KKT conditions for a local minimum of the higher
level problem neglecting the implicit dependence of the maximizer w∗ on x. Note that
the multiplier χ∗ of the upper level problem satisfies 0 ≥ χ∗i while the multipliers of
the lower level maximization problems satisfy 0 ≤ λ∗j . In this sense, the only difference
between standard minimization problems and min-max optimization problems are a couple
of ”minus-signs“ in the optimality conditions.

Finally, we conclude our discussion of first order necessary optimality conditions with the
following definition:

Definition 3.6: We say that a point (x∗, w∗, λ∗) is a KKT point of the min-max
problem (3.3.1) if and only if (w∗j , λ∗j ) is a nondegenerate maximizer of the j-th lower
level maximization problem for all j ∈ {0, . . . ,m} and x∗ is a KKT point of the auxiliary
problem (3.3.12).

Second Order Sufficient Conditions

Let us discuss second order sufficient conditions for a local solution of the min-max
problem (3.3.1) reviewing the results in [119] on semi-infinite programming problems.
Note that the following result on second order sufficient conditions is not a new result
but summarized in a form in which it will later be needed for the discussion of numerical
algorithms.

Let us come back to the implicitly defined functions ŵj(x) and λ̂j(x) which have been
used within the proof of Theorem 3.2. We denote the active set of the j-th lower level
problem in a KKT point (x∗, w∗, λ∗) by

A∗j :=
{
k | Bk(w∗j ) = 0

}
= { k | λ∗k > 0 } .

Note that we assume here that the maximizers are non-degenerate in the sense of
Definition 3.4. Hence, we have in particular strict complementarity as indicated in the
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above equation. Moreover, we define the matrices:

Ω∗j :=

 ∂2

∂w2Lj(x∗, w∗j , λ∗j )
(
∂
∂wB

j,act(w∗j )
)T

∂
∂wB

j,act(w∗j )



and R∗j :=

 ∂2

∂w∂xHj(x∗, w∗j , λ∗j )

0|A∗j |

 .

Here, Bj,act is a function which consists of the components Bk of the function B for
which k ∈ Aj . The syntax 0|A∗j | denotes a |A∗j | dimensional vector filled with zeros.

Proposition 3.1: Let (x∗, w∗, λ∗) be a KKT point of the min-max problem (3.3.1) in
the sense of Definition 3.6 with w∗ being a nondegenerate maximizer. Now, we have for
all j ∈ {0, . . . , n}:

∂

∂x

(
ŵj(x∗)
−λ̂act

j (x∗)

)
= −Ω∗j

−1Rj .

Here, λ̂act
j denotes the components of the function λ̂j , whose index is in the active set A∗j .

Proof: Note that under the non-degeneracy assumption for the lower level problems, the
matrix Ω∗j is invertible and the active set remains constant in a neighborhood of (x∗, w∗, λ∗)
- thus, we can simply compute the derivative by solving the associated parameterized KKT
system with respect to the active constraints. �

Theorem 3.3: Let the conditions of Theorem 3.2 be satisfied with (x∗, w∗, λ∗, χ∗)
being the KKT point of the min-max problem (3.3.1) satisfying the conditions (3.3.11).
Furthermore, we introduce for each j ∈ {0, . . . , n} a Schur matrix S∗j ∈ Rnx×nx defined
by

S∗j := ∂2

∂x2Hj(x∗, w∗j )−R∗j
TΩ∗j

−1R∗j

as well as a tangent space T ⊆ Rnx defined by

T :=
{
ξ ∈ Rnx | ∀k ∈ A : ∂

∂x
Hk(x∗, w∗) ξ = 0

}
.
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78 ROBUST NONCONVEX OPTIMIZATION

If the second order sufficiency condition

∀ ξ ∈ T : ξT
(
S∗0 −

n∑
k=1

χ∗kS
∗
j

)
ξ > 0

is satisfied, then (x∗, w∗, λ∗) is a locally optimal of the min-max problem (3.3.1).

Proof: In the proof of Theorem 3.2 we have introduced the auxiliary problem (3.3.12)
which is locally equivalent to the min-max problem (3.3.1). Using Proposition 3.1 we find
that

∀ j ∈ {0, . . . , n} : d2

dx2 Lj(x
∗, ŵj(x∗), λ̂j(x∗)) = S∗j .

Consequently, the statement of the above theorem is equivalent to the standard second
order sufficient condition (SOSC) for the auxiliary problem (3.3.12). �

3.4 Mathematical Programming with Complementarity Con-
straints

The key idea of the above proof was to introduce the auxiliary problem (3.3.12) which
is equivalent to the original min-max problem (3.3.1). However, in order to formulate
problem (3.3.12) we had to introduce the functions ŵj and λ̂j by using the implicit function
theorem. These functions are only locally defined and might become non-differentiable
at points x that are far from x∗. We are interested in the question whether we can
also transform problem (3.3.1) into an equivalent minimization problem without using
the implicit function theorem. This is possible by writing the KKT conditions into
the constraints, considering a mathematical program with complementarity constraints
(MPCC) of the form

minimize
x,w,λ

H0(x,w0)

subject to


0 ≥ Hi(x,wi) 0 = ∇wLj(x,wj , λj)
0 ≥ B(wj) 0 ≤ λj

0 =
∑n
k=0 λ

T
kBk(wk)

(3.4.1)

for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Note that MPCC formulations of the above
form are well-known and discussed in the literature [223]. However, mathematical problems
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MATHEMATICAL PROGRAMMING WITH COMPLEMENTARITY CONSTRAINTS 79

with complementarity have certain disadvantages in our context. Before we discuss the
details of this statement, we outline the two main drawbacks of formulation (3.4.1) as
follows:

• It is without further precaution not trivial to discuss KKT points of an MPCC.
For example the Mangasarian Fromovitz constraint qualification (MFCQ) for the
minimization problem (3.4.1) is violated at all feasible points of an MPCC. This
can directly be seen by looking at the complementarity conditions but we also refer
to [205] for a discussion of the details of this statement. As the LICQ condition
implies the MFCQ condition, both constraint qualifications do not help in the context
of mathematical programs with complementarity constraints.

• If the functions Hj are convex in x and concave in w for all j ∈ {0, . . . , n},
the original robust counterpart problem (3.3.1) is perfectly convex. However,
formulation (3.4.1) must in this form be regarded as a non-convex optimization
problem.

Due to the above observations, the MPCC (3.4.1) must have a certain structure which
we have to exploit in order to re-cover a non-degenerate formulation.
Remark 3.4: The degeneracy of the MPCC (3.4.1) seems to be the main motivation for
the development of smoothing techniques for numerical approaches. In [223] or also in [88]
such smoothing techniques for MPCCs have been discussed. Here, the main concept is
to replace the complementarity conditions by an NCP function Ψ : R × R → R which
satisfies by definition

Ψ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0 . (3.4.2)
Note that for example the (smoothed) Fischer-Burmeister function [92], which is a function
of the form Ψτ (a, b) := a+ b−

√
a2 + b2 + 2τ2), or also the Chen-Harker-Kanzow-Smale

function [56], which is defined as Ψτ (a, b) := 1
2

(
a+ b−

√
(a− b)2 + 4τ2

)
, satisfy

for τ = 0 the above property. Using such an NCP function Ψ, the MPCC (3.4.1) can
equivalently be written as

minimize
x,w,λ

H0(x,w0)

subject to 0 ≥ Hi(x,wi)

0 = ∇wLj(x,wj , λj)

0 = Ψ(−Bl(wj), (λj)l)
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80 ROBUST NONCONVEX OPTIMIZATION

for all components l ∈ {1, . . . , nB} and all i ∈ {1, . . . , n}, j ∈ {0, . . . , n}. As NCP
functions are typically non-smooth, the function Ψ must be regularized before the above
minimization problem can be solved with standard derivative based NLP solvers - for
example by using τ > 0 in the above examples for smoothed NCP functions. This leads
to a kind of interior point approach where a sequence of regularized NLPs must be solved
and which can be shown to converge to Fritz-John points of the original semi-infinite
programming problem (3.3.1). For the details of this smoothing approach we refer to [223].

Note that there exist also general purpose SQP methods for MPCCs (3.4.1). For a
recommendable article about such SQP methods for mathematical programming problems
with complementarity constraints, we refer to the work of Fletcher, Leyffer, Ralph, and
Scholtes [98]. Note, that the local convergence properties of such methods are typically
challenging to analyze, as the KKT points of the MPCC (3.4.1) do not satisfy the MFCQ
condition. Additionally, globalization results for general purpose SQP methods applied
to MPCCs are - due to the unbounded multiplier solution set of an MPCC - difficult to
obtain [98], but they are subject of current research [8, 239].

Remark 3.5: Note that there exists extensive literature on optimality conditions and
constraint qualifications for general MPCCs. Here, we refer to the work of Flegel and
Kanzow [94] and the references therin. Although, the standard constraint qualifications
like MFCQ and LICQ cannot be applied for MPCC’s, Flegel and Kanzow have shown that
Guignard’s constraint qualification [113] can be used to discuss KKT points.

In the following, we develop an alternative strategy to deal with the MPCC (3.4.1), which
does not employ the smoothing techniques which have been outlined in the remark above.
Rather, we plan to use the particular structure which occurs in problem (3.4.1) as this
MPCC arises within the context of min-max formulations.

Elimination of the Complementarity Constraints

How can we avoid the complementarity constraints in the MPCC (3.4.1)? The first idea
would be to simply skip the complementarity constraint in the formulation. As the primal
and dual feasibility constraints of the lower level maximization problems are still required,
we could then still guarantee that the term λTi B(x,wi) is non-positive in the optimal
solution, but not necessarily zero. In order to fix this, we plan to penalize the terms
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MATHEMATICAL PROGRAMMING WITH COMPLEMENTARITY CONSTRAINTS 81

−λTi B(x,wi) . Thus, we add them in the constraints and objective of our formulation:

minimize
x,w,λ

H0(x,w0)− λT0 B(w0)

subject to
{

0 ≥ Hi(x,wi)− λTi B(wi) 0 = ∇wLj(x,wj , λj)
0 ≥ B(wj) 0 ≤ λj

(3.4.3)

with i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. This way of reformulating the MPCC turns
out to be an equivalence transformation:

Lemma 3.5: Problem (3.4.3) is equivalent to original MPCC (3.4.1) in the sense
that every solution x∗ of problem (3.4.3) corresponds to a solution of the original
problem (3.4.1).

Proof: Note that problem (3.4.3) can also in a more compact form be written as

minimize
x,w,λ

L0(x,w0, λ0)

subject to
{

0 ≥ Li(x,wi, λi) 0 = ∇wLj(x,wj , λj)
0 ≥ B(wj) 0 ≤ λj .

(3.4.4)

Due to duality, the inequalities 0 ≥ B(wj) and 0 ≤ λj imply that we must have

Hi(x,wi) ≤ Li(x,wi, λi) ≤ 0 .

Thus, the upper level constraints of the original minimization problem are satisfied in
the optimal solution. This implies that every solution x∗ of problem (3.4.3) corresponds
to a solution of the original problem (3.4.1), as we can achieve λTj B(wj) = 0 for all
j ∈ {0, . . . , n}. �

A Closer Look at the Optimality Conditions

In the following, we plan to analyze the optimality conditions of problem (3.4.4) in more
detail which are expected to coincide with the conditions from Theorem 3.2. For this aim,
we first define the Lagrangian function for this minimization problem as

K := L0(x,w0, λ0)−
n∑
i=1

χiLi(x,wi, λi)

−
n∑
j=0

[
ρTj ∇wLj(x,wj , λj) + µTj B(wj)− κTj λj

]
. (3.4.5)
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82 ROBUST NONCONVEX OPTIMIZATION

Here, the variables χ ∈ Rn, ρj ∈ Rnw , µj ∈ RnB , and κ ∈ RnB with j ∈ {0, . . . , n} are
multipliers which are associated with the constraints in the minimization problem (3.4.4).

In the following, we will show that the multipliers ρj and µj vanish in the optimal solution
of the problem (3.4.4). This is a technical result which will in the next chapter be used
for constructing efficient algorithms.

Lemma 3.6: Let (x∗, w∗, λ∗) be a KKT point of problem (3.4.4) such that w∗ is a
nondegenerate maximizer of the lower level problem. Then the multipliers ρj which are
associated with the stationarity constraint

∇wLj(x,wj , λj) = 0

are all equal to zero, i.e., we have ρj = 0 for all j ∈ {0, . . . , n}. Similarly, the multipliers
which are assoicated with the constraints of the form B(wj) ≤ 0 vanish, too. In other
words, we have µj = 0 for all j ∈ {0, . . . , n}.

Proof: The first step of the proof is to work out the stationarity conditions for
problem (3.4.4) which must hold at any solution point (x∗, w∗, λ∗). Differentiating
the Lagrangian function K, which has been defined in equation (3.4.5), with respect to w
and λ yields the relations

∀j ∈ {0, . . . , n} : 0 = ρTj
∂2Lj(x∗, w∗j , λ∗j )

∂w2 + µTj
∂B(w∗j )
∂w

(3.4.6)

and 0 = χjB(w∗j ) +
∂B(w∗j )
∂w

ρj + κj ,

respectively. Here, we have already simplified the stationarity condition with respect to w
by using the relation ∂Lj(x∗,w∗j ,λ

∗
j )

∂w = 0 . Moreover, we use the definition χ0 := −1 in
order to simplify notation. Now, the main idea is to multiply equation (3.4.6) from the
right with ρj . This leads to

∀j ∈ {0, . . . , n} : 0 = ρTj
∂2Lj(x∗, w∗j , λ∗j )

∂w2 ρj − χjµTj B(w∗j )− µTj κj

As we can use the complementarity condition µTj B(w∗j ) = 0, this equation further simplifies
to

∀j ∈ {0, . . . , n} : ρTj
∂2Lj(x∗, w∗j , λ∗j )

∂w2 ρj = µTj κj ≥ 0 . (3.4.7)
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If we would assume that the matrix ∂2Lj(x∗,w∗j ,λ
∗
j )

∂w2 ≺ 0 is negative definite, we could
now already conclude that we must have ρj = 0. However, as we assume that w∗ is a
nondegenerate maximizer of the lower level problem, we only know that the Hessian matrix
∂2Lj(x∗,w∗j ,λ

∗
j )

∂w2 is negative definite in the subspace which is spanned by the active lower
level constraints. Thus, we introduce the short hand ∂Bact(w∗j )

∂w to denote those rows of the
matrix ∂B(w∗j )

∂w whose index corresponds to an active lower level constraint in the j-th lower
level maximization problem. Here, we also write Bact(w∗j ) = 0. Similarly, κact

j collects
the components of the vector κ which are in this active set. As we assume that w∗ is a
nondegenerate lower level maximizer, we can use the strict complementarity condition to
show that we have λact

j > 0. Note that the complementarity condition for problem (3.4.4)
can be written as (κact)T λact

j = 0 which implies κact = 0. Thus, we conclude

∀j ∈ {0, . . . , n} : 0 ≤ ρTj
∂2Lj(x∗, w∗j , λ∗j )

∂w2 ρj ≥ 0

and 0 = χjB
act(w∗j ) +

∂Bact(w∗j )
∂w

ρj + κact
j =

∂Bact(w∗j )
∂w

ρj = 0 .

Indeed, as ∂2Lj(x∗,w∗j ,λ
∗
j )

∂w2 is negative definite in the tangential subspace which is spanned
by the active lower level constraints, we may conclude ρj = 0 for all indices j ∈ {0, . . . , n}.
Finally, as we can use ρj = 0 in equation (3.4.6), we may also conclude µj = 0 for all
j ∈ {0, . . . , n}, as we can use that the lower level LICQ condition is satisfied. �
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Chapter 4

Sequential Algorithms for Robust
Optimization

The aim of this chapter is to develop numerical algorithms which can solve min-max
problems of the form (3.3.1). Recall that this problem can be written as

min
x∈Rnx

max
w0∈B

H0(x,w0)

s.t. max
wi∈B

Hi(x,wi) ≤ 0 with i ∈ {1, . . . , n} , (4.0.1)

where the functions Hi are assumed to be concave in w. Moreover, the uncertainty set B
is – as in the previous chapter – assumed to be given in the explicit form

B := {w ∈ Rnw | B(w) ≤ 0 } ,

where the function B is component-wise convex in w. In this context, our aim is not to
find global solutions of the above min-max problem, but we are looking for an algorithm
which converges globally to local minimizers.

The question of how such an algorithm should be designed depends heavily on the functions
Hi and B. For example the dimensions of these functions, the dimensions nx and nw of
the optimization variables x and w, respectively, the costs for a function evaluation, as
well as the cost of computing derivatives of the functions Hi and B will mainly influence
our choice of numerical techniques. If the function evaluation is cheap while the difficulty
is in determining the active sets, an application of interior point techniques might come
to our mind. However, in this thesis, we are interested in the opposite situation, i.e., in
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86 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

the case that the evaluation of the functions and their derivatives is the most expensive
part. For standard nonlinear programs, SQP methods have turned out to perform very
well in such situations [182].

We first discuss in Section 4.1 the advantages and disadvantages of tailored sequential
quadratic programming algorithms, which are one option to solve the min-max
problem (4.0.1). In Section 4.2 an alternative strategy is suggested which we call sequential
convex bilevel programming. The local and global convergence properties of this method
are discussed in Sections 4.3 and 4.4, respectively.

4.1 Tailored Sequential Quadratic Programming Methods

The aim of this section is to discuss a tailored sequential quadratic programming algorithm
applied to a structured optimization problem of the form

minimize
x,w,λ

L0(x,w0, λ0)

subject to
{

0 ≥ Li(x,wi, λi) 0 = ∇wLj(x,wj , λj)
0 ≥ B(wj) 0 ≤ λj

(4.1.1)

with i ∈ {1, . . . , n} and j ∈ {0, . . . , n}. Here, we adopt the notation from the previous
chapter planning to solve the original min-max problem (4.0.1) numerically. Recall that
the Lagrangian functions Lj can explicitly be written as

Lj(x,wj , λj) = Hj(x,wj)− λTj B(wj) .

As it has extensively been discussed within Section 3.4, problem (4.1.1) is equivalent to
the original min-max problem (4.0.1).

As the optimization problem (4.1.1) is a standard minimization problem, existing
optimization algorithms can be applied. In this section, our focus is on sequential
quadratic programming (SQP) methods. In order to transfer the main idea of such SQP
methods to our situation, we assume that we have an initial guess z0 for a local minimizer
z∗ := (x∗, w∗, λ∗) of problem (4.1.1). Now, we plan to perform iterates of the form

z+ = z + α∆z :=

 x+ α∆x
w + α∆w
λ+ α∆λ


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with α ∈ (0, 1] being a damping parameter. The aim is to choose the steps ∆z such that
the corresponding sequence of iterates z converges to a local solution z∗ of problem (4.1.1).
Here, it should be explained that we suppress the iteration index within our notation, i.e.,
z+ denotes always the “next” iterate in the sequence.

Applying the standard version of SQP, the step ∆z is obtained by solving a quadratic
programming problem of the form

min
∆z

L0 + L0
x∆x+ L0

w∆w0 −BT
0 ∆λ0 + 1

2∆zTK∆z

s.t. 0 ≥ Li + Lix∆x+ Liw∆wi −BT
i ∆λi

0 = Ljw + ∆xTLjxw + ∆wTj Ljww −∆λTj Bj
w

0 ≥ Bj +Bj
w∆w

0 ≤ λj + ∆λj ,

(4.1.2)

where the constraints are imposed for all indices i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}.
Here, we use the following short hands:

Ljww := ∂2

∂w2Lj(x,wj , λj) , Ljwx := ∂2

∂w∂xLj(x,wj , λj) , Ljxw :=
(
Ljwx

)T
,

Ljw := ∂
∂wLj(x,wj , λj) , Ljx := ∂

∂xLj(x,wj , λj) , Lj := Lj(x,wj , λj) ,
Bj
w := ∂

∂wB(wj) , Bj := B(wj) .

Most of the commonly used variants of SQP methods distinguish only in the way how the
Hessian matrix is approximated. In our case, the Hessian approximation is denoted by the
symmetric matrix K ∈ Snx + (n+1)nw + (n+1)nB . Recall that the Lagrangian function K,
which is associated with the optimization problem (4.1.1), has already been worked out
within equation (3.4.5). The exact Hessian matrix ∂2K

∂z2 has a particular structure, which
we plan to exploit for the construction of an approximation of the form

K ≈ ∂2K
∂z2 =



Kxx K0
xw . . . Knxw 0 . . . 0

K0
wx K0

ww K0
wλ

... . . . . . .
Knwx Knww Knwλ

0 K0
λw

... . . . 0
0 Knλw


. (4.1.3)
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In this context, we are using the following short hands (with χ0 := −1):

Kxx :=
n∑
j=0
Kjxx ,

Kjxx := −χjLjxx − ρTj Ljwxx ,

Kjwx :=
(
Kjxw

)T
= −χjLjwx − ρTj Ljwwx ,

Kjww := −χjLjww − ρTj Ljwww − µTBj
ww ,

Kjwλ :=
(
Kjwλ

)T
= −χjLjwλ − ρ

T
j L

j
wwλ .

At this point, there are several options on how we can deal with the particular structure of
the Hessian matrix (4.1.3). In the following, we compare four different options discussing
in each case the corresponding advantages and disadvantages.

Standard BFGS-SQP Algorithms

First, we discuss the possibility to solve problem (4.1.1) by applying a standard SQP
method without exploiting any structure. Most of the existing SQP solvers use BFGS-
updates [48, 95, 104, 211] for approximating the Hessian matrix. Here, the Hessian matrix
K is in each step updated as

K+ = K + yyT

yT s
− KssTK

sTKs
, (4.1.4)

where we define s := α∆z and y := ∂K(z+)
∂z − ∂K(z)

∂z . Again, there are several variants,
as for example Powell’s modification [192] which maintains a symmetric and positive
definite approximation matrix K. These BFGS-SQP methods are - under some mild
non-degeneracy assumptions [66, 199, 200] - q-superlinearly convergent in a neighborhood
of a minimizer z∗ (cf. also [182]). This variant would have the advantage that it is easy to
realize, as we can simply take an existing implementation, but has the disadvantage that
we do not exploit the problem structure efficiently: first, a standard BFGS-SQP method
would not exploit the block structure of the Hessian matrix ∂2K

∂z2 and second, we would
not use the fact that some of the blocks in the Hessian matrix – for example the terms
Ljww and Ljwx – have to be computed anyhow.
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TAILORED SEQUENTIAL QUADRATIC PROGRAMMING METHODS 89

Block BFGS-SQP Algorithms

The second possibility is to slightly modify the standard BFGS-SQP updates in order to
exploit the block structure of the Hessian matrix. For this aim, we first introduce slack
variables x0, x1, . . . , xn ∈ Rnx writing the problem (4.1.1) in the equivalent form

minimize
x,w,λ

L0(x0, w0, λ0)

subject to


0 ≥ Li(xi, wi, λi) 0 = ∇wLj(xj , wj , λj)
0 ≥ B(wj) 0 ≤ λj
x0 = x1 = . . . = xn .

(4.1.5)

The advantage of this reformulation is that the optimization problem is “almost” decoupled
– the only coupling is collected in the linear constraint of the form

x0 = x1 = . . . = xn .

The optimization variables can in this case be arranged in the following order:

ẑ :=
(
ẑT0 , . . . , ẑ

T
n

)T
with ẑTj :=

(
xTj , w

T
j , λ

T
j

)T
.

The main point is now that the linear constraint does not have a contribution to the
Hessian matrix ∂2K̂

∂ẑ2 which is associated with the problem (4.1.5) and which can be written
as

∂2K̂

∂ẑ2 =


K̂0
zz 0

K̂1
zz

. . .
0 K̂n

zz

 with K̂j
zz :=

 K
j
xx Kjxw Kjwλ
Kjwx Kjww 0
Kjλw 0 0

 .

The idea is now to use the BFGS updates not for approximating the whole Hessian matrix
but only to approximate the diagonal sub-blocks K̂j

zz for all j ∈ {0, . . . , n}. Note that
sparse or block structured matrix updates for optimization have intensively been studied
by Toint [227] and Griewank [111], as well by Bock and Plitt [43]. As for the unstructured
BFGS-SQP method, we can typically establish q-superlinear convergence of the method,
but the hope is that the block structured high-rank updates lead to a better performance
than the unstructured updates, as the high-rank updates take additional information into
account. Here, the block structured updates also reduce the memory requirements of the
method. Moreover, there exist QP-solvers which exploit sparse Hessian matrices as well.
For the details and a complete overview of such sparse QP solvers we refer to a recent
work by Maes [165] – and the references therein.
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90 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

Exact Hessian SQP Algorithms

Let us also discuss the possibility to apply an exact Hessian SQP methods, as for example
analyzed by Fletcher [96]. The advantage of computing the Hessian matrix exactly is that
we can – under some mild regularity assumptions [96] – expect that the method converges
locally q-quadratic. Another advantage is also here that existing implementations can be
used, i.e., we do not have to write a specialized algorithm. Another motivation for using
exact Hessians is that we have to compute the matrices Ljww, Bj

ww and Ljwx anyhow.
The reason for this is that we need these terms in order construct the linearization of the
stationarity constraints

0 = Ljw + ∆xTLjxw + ∆wTj Ljww −∆λTj Bj
w .

However, we should also be aware of the fact that the sub-blocks Kxx and Kjwx within
the exact Hessian matrix require the computation of third order derivatives of the model
functions

Ljwww := ∂3

∂w3Lj(x,wj , λj)

Ljwwx := ∂3

∂w2∂x
Lj(x,wj , λj)

and Ljwwλ := ∂3

∂w2∂λ
Lj(x,wj , λj)

with j ∈ {0, . . . , n}. Thus, if we apply an exact Hessian SQP method blindly, we need to
compute these expensive third order terms. Another disadvantage of exact Hessian SQP
is that the matrix K is in general not positive semi-definite. This implies for example
that we can be in the situation that we solve a sequence of non-convex QPs, even if the
original min-max problem is upper-level convex. Although state-of-the-art SQP solvers
can in principle deal with indefinite Hessian matrices, too, the non-convexity is often a
source of practical problems, as non-standard solvers for the non-convex QPs have to be
used and also globalization techniques become more difficult [60, 182].

Asymptotically Exact Hessian SQP Algorithms

We assume for a moment that we can accept possibly indefinite Hessians in the QP. In
this case, there arises the questions, whether we can modify the above exact Hessian SQP
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TAILORED SEQUENTIAL QUADRATIC PROGRAMMING METHODS 91

algorithm in such a way that we can still get q-quadratic convergence without computing
any third order derivatives. In order to motivate this, note that the formulation of the first
order necessary optimality conditions within Theorem 3.2 requires first order derivatives
only, which suggest that we can achieve quadratic convergence without computing any
third order derivatives of the Lagrangian functions Lj . If we want to exploit this, we have
to develop a tailored SQP method which uses the fact that the multipliers ρj are equal to
zero at the optimal solution z∗ (cf. Lemma 3.6).

The idea is now to construct a Hessian approximation K by taking basically the exact
Hessian, but leaving away all terms in which the multiplier ρj occur. More precisely, we
propose to use in each step of the SQP algorithm the following Hessian approximation:
K :=

Kxx −χ0L
0
xw . . . −χnLnxw 0 . . . 0

−χ0L
0
wx −χ0L

0
ww − µT0 B0

ww −(B0
w)T

... . . . . . .
−χnLnwx −χnLnww − µTBn

ww −(Bn
w)T

0 −B0
w

... . . . 0
0 −Bn

w


This choice for K has the advantage that the method can - under mild non-degeneracy
assumptions [96] - be expected to converge locally q-quadratic. This can be proven
by using the fact that the above Hessian approximation K converges locally at least
linearly to the exact Hessian matrix, if we are using that the iterates for ρj can be
expected to converge at least linearly to 0. This motivates the name asymptotically exact
Hessian SQP algorithm. Note that the above convergence argumentation is so far only a
sketch of a proof. A more consistent mathematical argumentation uses the Dennis-More
theorem [66, 67, 182]. As such a proof is completely analogous to the argumentation in
the proof of Theorem 9.2, which will later be discussed in different context in Chapter 9,
we do not expand all details here.

Concluding this discussion, standard as well as tailored SQP methods can be applied to
solve problems of the form (4.1.1). We have outlined the advantages and disadvantages
of these algorithms. In the following section, we will consider an alternative algorithmic
strategy which avoids some of the disadvantages of the above methods by exploiting the
structure of min-max problems in a more natural way.
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92 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

4.2 Sequential Convex Bilevel Programming

In this section, we develop an alternative to the SQP algorithm from the previous section,
which exploits the structure of the problem in a more natural way. As for the tailored SQP
method, the aim of our algorithm is to find a local minimizer

z∗ :=

 x∗

w∗

λ∗


of problem (4.1.1) assuming that we can satisfy the necessary KKT-type conditions (3.3.11)
with x∗ being a minimizer of problem (4.0.1). Let us assume that we have an initial guess
z0 for the point z∗. Starting from this initial guess, we plan to perform iterates of the
form

z+ = z + α∆z :=

 x+ α∆x
w + α∆w
λ+ α∆λ


with α ∈ (0, 1] being a damping parameter while the steps ∆x, ∆w, and ∆λ are assumed
to be the primal dual local min-max point of the following convex bilevel quadratic program
(min-max-QP):

min
∆x

max
∆w0∈Blin

0

H0 + L0
x∆x+

(
1
2∆wT0 L0

ww + ∆xTL0
xw +H0

w

)
∆w0 + 1

2∆xTKxx∆x

s.t. max
∆wi∈Blin

i

H i + Lix∆x+
(

1
2∆wTi Liww + ∆xTLixw +H i

w

)
∆wi ≤ 0

(4.2.1)

with i ∈ {1, . . . , n} and

Blin
j :=

{
∆wj | Bi

w∆wi +Bi ≤ 0
}

(4.2.2)

for all j ∈ {0, . . . , n}. Here, it should be explained that we use the notation ∆λj :=
λ†j − λj to denote the steps to be taken in the multipliers of the lower level maximization
problems, while ∆χ := χ† − χ depends on the dual solution χ† which is associated
with the inequality constraints in the minimization problem (4.2.1). Analogous to the
conventions in the previous section, the iteration index is suppressed for ease of notation.
Once a step has been performed we set the variable z to z+ in order to continue with the
next step. In particular, the symmetric and positive definite matrix

Kxx ∈ Rnx×nx
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SEQUENTIAL CONVEX BILEVEL PROGRAMMING 93

may change from iteration to iteration although this is in our notation not indicated by
an iteration index. However, possible choices of this matrix Kxx will be discussed later,
but we mention already at this point that Kxx should be a suitable approximation of the
Hessian matrix

L0
xx −

n∑
k=1

χkL
k
xx .

Note that the sub-maximization problems within the min-max problem (4.2.1) can be
regarded as convex quadratic programs (QPs) of the form

Vi(∆x) := max
∆wi

1
2∆wTi Liww∆wi +

(
∆xTLixw +H i

w

)
∆wi

s.t. Bi
w∆wi +Bi ≤ 0 ,

(4.2.3)

as Liww is assumed to be negative semi-definite (cf. Assumption 3.2). Moreover, the
upper level minimization problem takes the form

min
∆x

H0 + L0
x∆x+ V0(∆x) + 1

2∆xTKxx∆x

s.t. H i + Lix∆x+ Vi(∆x) ≤ 0 ,
(4.2.4)

which is a strictly convex optimization problem if Kxx is positive definite. Here, we have
used the fact that the functions Vj are convex in ∆x as the maximum over linear functions
is convex. As for SQP methods, the existence of ∆z is not guaranteed as the sub-problems
might be infeasible. However, assuming that the sub-problems are feasible and that
the convex quadratic programs (4.2.3) have unique solutions, we have a guarantee that
the step ∆z is unique. Moreover, the convexity has the practical advantage that the
sub-problem can efficiently be solved with existing convex optimization tools.

In the case that Liww is strictly negative definite, we can explicitly compute the dual of
the convex QP problems (4.2.3). Provided that the QPs (4.2.3) admit strictly feasible
points (Slater’s condition) problem (4.2.4) is equivalent to a convex QCQP of the form

min
∆x,λ†

H0 + L0
x∆x− 1

2g0(∆x, λ†)
(
L0
ww

)−1
g0(∆x, λ†)T −BT

0 λ
†
0 + 1

2∆xTKxx∆x

s.t. H i + Lix∆x− 1
2gi(∆x, λ

†)
(
Liww

)−1
gi(∆x, λ†)T −BT

i λ
†
i ≤ 0 .

where we have used the short hand

gj(∆x, λ†) := ∆xTLjxw −
(
λ†j

)T
Bj
w +Hj

w .

Note that this problem can solved with any suitable convex QCQP solver.
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94 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

Remark 4.1: Being at this point, it is helpful to state the differences between the outlined
sequential convex bilevel programming methods and the SQP method from the previous
section. For this aim, we observe that the equality constraint in the QP (4.1.2) can be
used to eliminate the variables ∆w in this QP, as long as we assume that Lww is invertible.
This leads to a relation of the form

0 = Ljw + ∆xTLjxw + ∆wTj Ljww −∆λTj Bj
w (4.2.5)

⇐⇒ ∆wj = −
(
Ljww

)−1
gj(∆x, λ†)T .

If we use this relation, the linearized upper level constraints in the QP (4.1.2) have the
form

0 ≥ Li + Lix∆x+ Liw∆wi −BT
i ∆λi (4.2.6)

= H i + Lix∆x− Liw
(
Liww

)−1
gi(∆x, λ†)T −BT

i λ
†
i .

This is a linear constraint in the variables ∆w and ∆λ while the corresponding constraint
in the QCQP (4.2.5) is quadratic in ∆w and ∆λ. This must be interpreted as the main
difference between the two methods. In another variant, we could also try to not linearize
the upper level constraints, but expand them a little further taking some quadratic terms
into account. More precisely, we can replace the linearized constraint of the form (4.2.6)
with the quadratic inequality

0 ≥ Li + Lix∆x+ Liw∆wi −BT
i ∆λi −∆λTi Bi

w∆wi + ∆xTLixw∆wi + 1
2∆wiLiww∆wi ,

which corresponds to a second order Tailor expansion, but leaves the possibly non-convex
quadratic terms in ∆x away. If we now use relation (4.2.5) this quadratic expansion is
equivalent to a constraint of the form

0 ≥ H i + Lix∆x− 1
2gi(∆x, λ

†)
(
Liww

)−1
gi(∆x, λ†)T −BT

i λ
†
i . (4.2.7)

This is exactly the constraint which occurs in the QCQP (4.2.5). Thus, we have now two
ways to derive the QCQP sub-problem (4.2.5), which must be solved in each step of the
algorithm.

Definition 4.1: We define for each j ∈ {0, . . . , n} the lower level working set Aj(λ†) by

Aj(λ†) :=
{
k ∈ {0, . . . , n}

∣∣∣ (λ†j)k > 0
}
. (4.2.8)

Moreover, we denote the number of elements in Aj(λ†) by mj :=
∣∣∣Aj(λ†)∣∣∣ .
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SEQUENTIAL CONVEX BILEVEL PROGRAMMING 95

We use the above notation to introduce the lower level KKT matrices

Ωj :=
(

Ljww
(
Bj,act
w

)T
Bj,act
w 0

)
, (4.2.9)

where Bj,act
w ∈ Rmj×nw is a matrix which consists of the rows of Bj

w, whose index is in
the working set Aj(λ†).

Assumption 4.1: We assume that for all iterates and for all j ∈ {0, . . . , n} the matrix
Ljww is negative semi-definite while the matrix Ωj is invertible.

Note that the above assumption seems reasonable in our context as we are interested in
the case that the lower level optimization problems are convex while a non-degeneracy
assumption (or reduction ansatz) holds in the optimal solution. In this sense, the above
assumption is not excessively restrictive requiring a kind of regularity condition to be
satisfied during the iterations.

Proposition 4.1: If Assumption 4.1 holds, the bilevel optimization problem (4.2.1) can
equivalently be regarded as an MPCC. Here, the condition that the pairs (∆wj , λ†j)
are primal-dual maximizers can for all j ∈ {0, . . . , n} equivalently be replaced by the
corresponding KKT conditions

0 = ∆xTLjxw + ∆wTj Ljww −∆λTj Bj
w + Ljw (4.2.10)

0 ≥ Bj
w∆wj +Bj (4.2.11)

0 ≤ λj + ∆λj = λ†j (4.2.12)

0 =
(
Bj
w∆wj +Bj

)T
λ†j (4.2.13)

using the notation Ljw := Hj
w − λTj Bj

w.

Proof: The above Proposition should be self-explaining: the conditions (4.2.10)-(4.2.13)
are simply the necessary KKT optimality conditions for the lower-level QPs (4.2.3). Here,
Assumption 4.1 guarantees both: first, the invertibility of Ωj implies a linear independence
constraint qualification which justifies the application of the KKT theorem, and second
it implies concavity of the QPs and thus the sufficiency of the first order KKT conditions. �
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96 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

Remark 4.2: The above Proposition shows that the bilevel optimization problem (4.2.1)
can be regarded as a mathematical program with linear complementarity constraints
(MPLCC), which are in their general form rather expensive and difficult to solve [58, 154].
Note that the special structure arising from the semi-infinite programming context as
well as the convexity of the bilevel problem (4.2.1) are the foundation of the presented
sequential convex bilevel programming method, which make it efficient. This aspect is also
the main difference of the presented method in comparison to techniques like piecewise
sequential quadratic programming methods for general MPCCs [162, 196, 243], where a
quadratic program with linear complementarity constraints (QPLCC) must be solved in
each step of the sequential method.

In the next step we work out the optimality conditions for the bilevel QP (4.2.1). For this
aim, we introduce the matrices Rj ∈ Rnx×(nw+mj) as well as the vectors sj ∈ Rnw+mj

(with j ∈ {0, . . . , n}) which are defined as

Rj :=
(
Ljw,x

0

)
and sj :=

( (
Hj
w

)T
Bj,act

)
(4.2.14)

respectively. Here, the matrix Bj,act consists of all components of Bj , whose index is in
the working set Aj(λ†). Moreover, we use the notation Tj := RTj Ω−1

j Rj .

Definition 4.2: Requiring that Assumption 4.1 is satisfied, we say that the QP (4.2.3) is
nondegenerate for a given ∆x if the strict complementarity condition (SCC)

Bj
w∆wj +Bj − λ†j < 0 . (4.2.15)

holds at the primal dual solution (∆wj , λ†j) of the QP (4.2.3) .

Assumption 4.2: We assume that all lower level QPs of the form (4.2.3) are
non-degenerate at the solution (∆x,∆w, λ†) of problem (4.2.1), i.e., the strict
inequality (4.2.15) is satisfied at this point for all indices j ∈ {0, . . . , n}.

Note that the non-degeneracy of the j-th lower level QP at a given ∆x implies that the
variables ∆wj and λ†j can in a neighborhood of ∆x be regarded as a locally linear function.
This is due to the fact that Assumption 4.1 is equivalent to the LICQ and SOSC condition
for the lower level QPs while the SCC condition is required by the above definition.
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SEQUENTIAL CONVEX BILEVEL PROGRAMMING 97

Definition 4.3: Let the point (∆x,∆w, λ†) be a feasible point of the bilevel prob-
lem (4.2.1). Providing that Assumption 4.1 is satisfied, we say that the extended LICQ
condition is satisfied at (∆x,∆w, λ†) if the vectors

Lkx − sTk Ω−1
k Rk + ∆xTT Tk ∀k ∈ W (4.2.16)

are linearly independent. Here,

W :=
{
k |

(
Lix∆x+ Liw∆wi −∆λTi Bi + Li

)
k

= 0
}

denotes the active set which is associated with the upper level constraints.

Lemma 4.1: Let Assumptions 4.1 and 4.2 be satisfied. Furthermore, let the point
(∆x,∆w, λ†) be a minimizer of problem (4.2.1) for which the extended LICQ-condition
holds. Now, we have necessarily

0 =
(
Kxx − T0 +

n∑
k=1

χ†kTk

)
∆x+

(
L0
x − sT0 Ω−1

0 R0
)T

−
n∑
k=1

χ†k

(
Lkx − sTk Ω−1

k Rk
)T

(4.2.17)

0 ≥ H i + Lix∆x− 1
2 (Ri∆x+ si)T Ω−1

i (Ri∆x+ si) (4.2.18)

0 ≥ χ+ ∆χ := χ† (4.2.19)

0 =
(
H i + Lix∆x− 1

2 (Ri∆x+ si)T Ω−1
i (Ri∆x+ si)

)
χ†i (4.2.20)

for all i ∈ {1, . . . , n}. Furthermore, the multiplier χ† is unique.

Proof: Due to the non-degeneracy Assumption 4.2 for the lower level QPs (4.2.3)
the bilevel problem (4.2.1) is locally equivalent to an auxiliary quadratically constrained
quadratic program of the form

min
∆x

1
2∆xTKxx∆x+ L0

x∆x− 1
2 (R0∆x+ s0)T Ω−1

0 (R0∆x+ s0)

s.t. H i + Lix∆x− 1
2 (Ri∆x+ si)T Ω−1

i (Ri∆x+ si) ≤ 0
. (4.2.21)
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This follows immediately from a local elimination of the variable ∆w on dependence on
∆x, i.e., we know that the active set of the lower level QPs remains locally constant in
∆x such that we can exploit the relation

Rj∆x+ Ωj

(
∆wj
−λ†,act

j

)
+ sj = 0 , (4.2.22)

which summarizes the parameterized stationarity as well as the primal feasibility condition
of the active constraints associated with the j-th sub-QP (4.2.3). In this notation, λ†,act

j

is the vector which consists of the non-zero components of λ†j . Now, the extended LICQ
condition for the bilevel problem (4.2.1) reduces to a standard LICQ condition for the
auxiliary problem (4.2.21). Consequently, an application of the KKT theorem yields the
statement of the Lemma. �

4.3 Local Convergence Analysis

The local convergence properties of the presented sequential convex bilevel programming
method are much easier to discuss than the global convergence. Basically, we can transfer
the classical concepts for the local analysis of standard SQP theory. Thus, we will in
this section present the local convergence theory on an adequate advanced level aiming
at remarks on the details which are specific for sequential convex bilevel programming
methods.

Let us directly constrain ourselves to the assumption that the active set during the local
phase of the algorithm is already correctly detected and stable. For this aim, we recall
that the min-max problem (4.0.1) is equivalent to the MPCC (3.4.1). Similarly, the
extended LICQ condition (ELICQ) for the min-max problem (4.0.1) (cf. Definition (3.5))
is equivalent to the MPCC-LICQ condition1 for the problem MPCC (3.4.1), as this follows
immediately from Lemma 3.6. Here, the stability of the active set can in our context be
guaranteed as follows:

Assumption 4.3 (Strong Regularity): We assume that at the local MPCC minimizer
(x∗, w∗, λ∗) of our interest the following strong regularity conditions are satisfied:

1For a deeper discussion of MPCC-LICQ and MPCC-MFCQ conditions, we refer to [93], where these
conditions are defined via tightened nonlinear programming problems (TNLP). Similar considerations can
be found in [98].
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LOCAL CONVERGENCE ANALYSIS 99

1. The solution w∗ of the lower level maximization problems is nondegenerate.

2. The ELICQ (or equivalently the MPCC-LICQ) condition is satisfied at (x∗, w∗, λ∗).

3. The second order sufficient condition, as defined in Theorem 3.3, is satisfied.

4. The upper level strict complementarity condition

Li(x∗, w∗i , λ∗i )− χ∗i < 0 (4.3.1)

holds for all i ∈ {1, . . . , n}.

Lemma 4.2: Let (x∗, w∗, λ∗) be a local minimizer of the MPCC (3.4.1) at which the
regularity Assumption 4.3 is satisfied. Then there exists a neighborhood of (x∗, w∗, λ∗) in
which the bilevel optimization admits a feasible solution ∆z which has the same active
set as the local minimizer (x∗, w∗, λ∗), i.e., we have Aj(λ†) = A∗j for all j ∈ {0, . . . , n}
as well as A(χ†) := { k | χk > 0 } = A∗ for all iterates in this neighborhood.

Proof: The feasibility as well as the stability of the active set for the lower level QPs
follows immediately from Robinson’s theorem [199, 200]. Similarly, we can also apply
Robinson’s theorem to the upper level auxiliary problem (3.3.12). Thus, we obtain
the feasibility and active set stability of the local QP-type necessary conditions from
Lemma 4.1. Here, we use that the ELICQ condition boils down to an LICQ condition for
problem (3.3.12) while the second order sufficient condition from Theorem 3.3 is equivalent
to the SOCS condition for problem (3.3.12). As the fourth requirement of Assumption 4.3
guarantees the SCC condition for problem (3.3.12), we have all the necessary regularity
conditions for problem (3.3.12) such that an application of Robinson’s theorem is justified.
Thus, we conclude the statement of the theorem. �

A question which we have not discussed so far is how we should choose the matrix
Kxx. In the following section we will assume that Kxx is positive definite as this makes
the discussion of the global convergence properties more convenient. However, such an
assumption is in principle not necessary for the discussion of local convergence properties,
although it is still desirable in the sense that it guarantees the convexity of the sub-problems.
In the context of local convergence, we are rather interested in a Dennis-Moré condition
of the form∥∥∥∥∥
(
Km
xx −

∂2

∂x2L0(x∗, w∗0, λ∗0) +
n∑
k=1

χ∗k
∂2

∂x2Lk(x
∗, w∗k, λ

∗
k)
)

∆xm
∥∥∥∥∥ ≤ cm ‖∆xm‖ (4.3.2)

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



100 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

where (cm)m∈N is a non-negative real valued sequence. Note that - with quite some abuse
of notation - the iteration index m has been recovered in this formulation recalling that
the Hessian approximation Kxx = Km

xx may change from iteration to iteration.
Theorem 4.1: Let Assumption (4.3) be satisfied while the Hessian approximation
sequence Km

xx satisfies the Dennis-Moré estimate (4.3.2) for a sequence (cm)m∈N.
Moreover, we assume that the sequential convex bilevel programming method takes
- at least close to the solution - always full-steps while the functions Hi and B have
Lipschitz continuous Hessians. Now, the following statements hold:

• If the sequence (cm)m∈N satisfies lim
m→∞

cm = 0, then the local convergence of the
sequential convex bilevel programming method is r-superlinear.

• If the sequence (cm)m∈N satisfies cm+1 ≤ κ cm for some κ < 1, then the local
convergence of the sequential convex bilevel programming method is r-quadratic.

Proof: Using Lemma 4.2 our aim is to show that the sequential convex bilevel
programming method is locally equivalent to a Newton type method applied to the
necessary conditions (3.3.11) from Theorem 3.2 under the assumption that the active set
is fixed. As Proposition 4.1 show already that the sequential convex bilevel programming
method linearizes the primal feasibility condition of the lower level problem in every step
exactly, we discuss directly the linearization of the active upper level constraint:

Li + ∂

∂z
Li ∆z = Li + Lix∆x+ Liw∆w −∆λTi Bi

= H i + Lix∆x+
(1

2∆wTi Liww + ∆xTLixw +H i
w

)
∆wi

+1
2∆wiLiww∆wi + Liw∆wi

= H i + Lix∆x+
(1

2∆wTi Liww + ∆xTLixw +H i
w

)
∆wi

−1
2∆wiLiww∆wi −∆xLixw∆wi + ∆λTi Bi

w∆w , (4.3.3)

which leads to ∥∥∥∥Li + ∂

∂z
Li ∆z

∥∥∥∥ ≤ O(‖∆z‖2) (4.3.4)
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LOCAL CONVERGENCE ANALYSIS 101

for all i in the active set, i.e., for all i with

H i + Lix∆x+
(1

2∆wTi Liww + ∆xTLixw +H i
w

)
∆wi = 0 .

It remains to discuss the Newton step with regard to the stationarity equation

0 = ∂

∂x
K(x,w, λ) = ∂

∂x
L0(x,w0, λ0)−

n∑
k=1

χk
∂

∂x
Lk(x,wk, λk) . (4.3.5)

A linearization of the above expression for ∂
∂xK leads to

∂

∂x
K + ∂

∂z

[
∂

∂x
K
]

∆z =
(
L0
xx∆x+ L0

xw∆w0 + L0
x

)

−
n∑
k=1

χk
(
Lkxx∆x+ Lkxw∆wk + Lkx

)
−

n∑
k=1

∆χkLkx .(4.3.6)

Note that we may assume ∆λinact
j = 0 during the local phase as we consider the case that

the correct active set has already settled. Combining this knowledge with the relation

Rj∆x+ Ωj

(
∆wj
−λ†, act

j

)
+ sj = 0

we can further transform to

∂

∂x
K + ∂

∂z

[
∂

∂x
K
]

∆z =
(
L0
xx −

n∑
k=1

χkL
k
xx

)
∆x− T0∆x+

n∑
k=1

χkTk∆x

−RT0 Ω−1
0 s0 +

n∑
k=1

χkR
T
0 Ω−1

0 s0 + L0
x −

n∑
k=1

χ†kL
k
x .(4.3.7)

Using the result of Lemma 4.1 in combination with the Lipschitz continuity of the Hessian
terms as well as the Dennis-Moré estimate (4.3.2) we obtain∥∥∥∥ ∂∂xK + ∂

∂z

[
∂

∂x
K
]

∆z
∥∥∥∥ ≤ (cm +O(‖z − z∗‖)) ‖∆x‖

+
∥∥∥∥∥−∑

k

∆χkTk∆x−
∑
k

∆χkRkΩ−1
k sk

∥∥∥∥∥ (4.3.8)
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102 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

Now, we use that ∥∥∥RkΩ−1
k sk

∥∥∥ = ‖−Tk∆x− Lxw∆w‖ ≤ O(‖∆z‖) (4.3.9)

to finally conclude∥∥∥∥ ∂∂xK + ∂

∂z

[
∂

∂x
K
]

∆z
∥∥∥∥ ≤ (cm +O(‖z − z∗‖)) ‖∆x‖+O(‖∆z‖2) . (4.3.10)

Note that this last estimate (4.3.10) together with the estimate (4.3.4) boil down to
a standard Dennis-Moré convergence criterion for the Newton method applied to the
optimality conditions with respect to the fixed active set. Both statements of the theorem
are a direct consequence. �

Remark 4.3: Note that the above theorem covers the case that Km
xx is generated by

BFGS updates, for which superlinear convergence is obtained. In the case of exact Hessian
approximations we have even quadratic convergence. This is in analogy to standard SQP
methods.

Remark 4.4: Note that the above local convergence result could be generalized for
the case that the second order matrices Lww, Lwx, and Lxw do not exactly coincide
with their associated second order terms as long as they are suitable approximations.
However, for such an ”inexact“ sequential convex bilevel programming method, the global
convergence argumentation from the following section would fail, as an approximation
of these second order terms would amount to an inexact linearization of the lower level
stationarity conditions, which are in the MPCC (3.4.1) formulated as equality constraints.

4.4 Global Convergence Analysis

A crucial point in the discussion of global convergence of any SQP type method is the
availability of a merit function which measures the progress of the iterations z+ = z+α∆z
towards a local minimum. This can for example be achieved via line search techniques [182]
adjusting the damping parameter α if necessary but also trust region methods [60] make
use of merit functions. In standard SQP methods with suitable regularity assumptions
Han’s exact l1-penalty function [115] is a traditional choice but there are also other
choices [182].
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GLOBAL CONVERGENCE ANALYSIS 103

Note that for general MPCCs it is not straightforward to transfer the idea of penalty
functions as most of the techniques, as e.g. discussed in [182], are based on the assumption
that a suitable constraint qualification holds. As MPCCs do often not satisfy these
constraint qualifications, standard proof techniques typically fail. Global convergence of
SQP methods for general MPCCs are an active field of research and we refer to [7, 23] for
further reading on global convergence of methods and a discussion of penalty functions
for general MPCCs.

Fortunately, the MPCC (3.4.1) arises from the context of semi-infinite programming and
it has a special structure which is exploited in the method presented in this thesis. This
helps us also to construct a suitable merit function for our needs. Let us start by defining
an upper level merit function ΦU : Rnx ×R(n+1)nw ×R(n+1)nB → R planning to measure
the progress in terms of upper level feasibility and optimality in the form

ΦU (x,w, λ) := L0(x,w0, λ0) +
n∑
k=1

χ̂k πk(Lk(x,wk, λk)) , (4.4.1)

where χ̂ ∈ Rn++ is a constant vector. Here, it should be explained that the positive
projection π : Rd → Rd+ is defined for arbitrary dimensions d while the components of π
satisfy

∀s ∈ Rd,∀k ∈ {1, . . . , d} : πk(s) := max { 0, sk } .

Similarly, |·| : Rd → Rd+ is also defined for arbitrary d where |s| denotes the component-wise
absolute value of a vector s ∈ Rd.

Beside the upper-level feasibility, we also need to measure the violation of the stationarity
and primal feasibility condition for the lower level optimization problems. In this context,
we observe that the dual feasibility condition λ+ ≥ 0 is automatically satisfied for the
iterates. Thus, a violation of dual feasibility in the lower level problems does not need to
be detected motivating the introduction of primal lower level merit functions of the form
Φj
L : Rnx × Rnw × RnB → R which are defined as

Φj
L(x,wj , λj) :=

∣∣∣∣∂Lj(x,wj , λj)∂w

∣∣∣∣ ρ̂j + λ̂Tj π(B(x,wj))

for all j ∈ {0, . . . , n}. Here, ρ̂j ∈ Rnw++ and λ̂j ∈ RnB++ are positive constants. The final
step is to compose a merit function Φ : Rnx × R(n+1)nw × R(n+1)nB → R as

Φ(x,w, λ) := ΦU (x,w, λ) + Φ0
L(x,w0, λ0) +

n∑
k=1

χ̂kΦk
L(x,wk, λk) . (4.4.2)
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104 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

In the following, we prepare the proof of Theorem 4.2 where a condition for a descent
direction of the merit function Φ will be discussed. In this context we make use of the
following assumption:

Assumption 4.4: The matrix Lww is negative definite.

Let us introduce the short-hand “∂α” to denote one sided directional derivatives in the
step direction, i.e., we define for example

∂αL0(x,w0, λ0) := lim
α→ 0+

L0(x+ α∆x,w0 + α∆w0, λ0 + α∆λ0)− L0(x,w0, λ0)
α

.

(4.4.3)

This abstract notation for one sided derivatives can analogously be transferred for the
other terms in the merit function. Let us state the following technical result:

Proposition 4.2: Transferring the notation (4.4.3) to denote one-sided directional
derivatives, the following expressions exist (the corresponding limits for α→ 0+ exist) and
satisfy

∂αL0(x,w0, λ0) = L0
x∆x+ L0

w∆w0 −∆λT0 B0 (4.4.4)

∂απ(Li(x,wi, λi)) ≤ −π(Li)− 1
2L

i
w

(
Liww

)−1
Liw

T (4.4.5)

∂απ(B(x,wj)) ≤ −π(Bj) (4.4.6)

∂α

∣∣∣∣ ∂∂wLj(x,wj , λj)
∣∣∣∣ = −

∣∣∣Ljw∣∣∣ (4.4.7)

for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Here, formula (4.4.5) requires Assumption 4.4
to be satisfied.

Proof: The first formula (4.4.4) follows immediately from definition (4.4.3). Moreover,
the conditions from the lower level QP optimality

Bj
w∆wj ≤ −Bj , (4.4.8)

and ∆xTLjxw + ∆wTj Ljww −∆λTj Bj
w = −Ljw (4.4.9)
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GLOBAL CONVERGENCE ANALYSIS 105

can be used to estimate the remaining directional derivatives (4.4.6) and (4.4.7) respectively.
It remains to verify estimate (4.4.5). For this aim, we first compute for all i ∈ {1, . . . , n}
the term

∂αLi = Lix∆x+ Liw∆wi −∆λTi Bi

≤ −H i −
(1

2∆wTi Liww + ∆xTLixw +H i
w

)
∆wi + Liw∆wi −∆λTi Bi

= −Li −
(1

2∆wTi Liww + ∆xTLixw +H i
w

)
∆wi + Liw∆wi − (∆λ†i )

TBi

(4.2.13)= −Li −
(1

2∆wTi Liww + ∆xTLixw +H i
w − (∆λ†i )

TBi
w

)
∆wi + Liw∆wi

(4.2.10)= −Li + 1
2∆wTi Liww∆wi + Liw∆wi

= −Li + 1
2
(
Liww∆wi + (Liw)T

)T (
Liww

)−1 (
Liww∆wi + (Liw)T

)

−1
2Lw

(
Liww

)−1
Liw

T

≤ −Li − 1
2L

i
w

(
Liww

)−1
Liw

T
. (4.4.10)

In the last step, we have used that Liww is negative definite. Estimate (4.4.5) is now a
direct consequence. �

Definition 4.4: Provided Assumption 4.4 is satisfied, we introduce the notation

ρj :=
(
Ljww

)−1
Ljw

T

for all j ∈ {0, . . . , n}.

Assumption 4.5: We assume that the matrix Kxx is symmetric and positive definite.

In the following Theorem we discuss that the presented sequential convex bilevel
programming method generates descent directions of the function Φ:
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106 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

Theorem 4.2 (Compatibility of the merit function): Let us assume that z is a given
iterate of the above sequential bilinear programming method for which the bilevel quadratic
optimization problem (4.2.1) admits a feasible solution ∆z while Assumptions 4.1, 4.2, 4.4
and 4.5 are satisfied. Furthermore, we assume that the weights in the merit function Φ
are sufficiently large such that we have

∀j ∈ {0, . . . , n} : χ̂ >
∣∣∣χ†∣∣∣ , ρ̂k > 3

2 |ρk| , λ̂j > 0 . (4.4.11)

Now, we have either

∆x = 0 , π(Bj) = 0 , π(Li) = 0 ,
∣∣∣Ljw∣∣∣ = 0 ,

ρj = 0 , ∆wj = 0 , and λTj B
j = 0 (4.4.12)

for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n} or ∆z is a descent direction of the merit
function Φ, i.e., we have

∂αΦ := lim
α→ 0+

Φ(x+ α∆x, w + α∆w, λ+ α∆λ )− Φ(x,w, λ)
α

< 0 .(4.4.13)

Proof: In the first step of this proof, we use the formula (4.4.4) in combination with
the linearized stationarity conditions (4.2.17) to compute

∂αL0(x,w0, λ0) = L0
x∆x+ L0

w∆w0 −∆λT0 B0

(4.2.17)= −∆xTKxx∆x+ ∆xTT0∆x+ sT0 Ω−1
0 R0∆x+ L0

w∆w0

−∆λT0 B0 −
n∑
k=1

χ†k

(
−Lkx∆x+ ∆xTTk∆x+ sTk Ω−1

k Rk∆x
)

By collecting terms, the above equation can also be summarized in the form

∂αL0(x,w0, λ0) = −∆xTKxx∆x+X0 −
n∑
k=1

χ†kXk −
n∑
k=1

χ†kL
k , (4.4.14)

where we use the short hands

X0 := ∆xTT0∆xT + sT0 Ω−1
0 R0∆x+ L0

w∆w0 −∆λT0 B0 (4.4.15)
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and
Xk := −Lk − Lkx∆x+ ∆xTTk∆xT + sTk Ω−1

k Rk∆x . (4.4.16)
for k ∈ {1, . . . , n}. Now, the basic strategy is to use the necessary optimality conditions
to transform the expressions for X0 and Xk and completing squares in such a way that
we can find suitable estimates for them. We start with the term for X0:

X0 := ∆xTT0∆x+ sT0 Ω−1
0 R0∆x+ L0

w∆w0 −∆λT0 B0

= −∆xTL0
xw∆w0 + L0

w∆w0 −∆λT0 B0 . (4.4.17)
The latter equality can be verified by multiplying equation (4.2.22) with ∆xTRT0 Ω−1

0 from
the left. In the next step we use the stationarity condition for the lower QP to further
transform to

X0 = ∆w0L
0
ww∆w0 + 2L0

w∆wo −∆λT0 B0
w∆w −∆λT0 B0

=
(
L0
ww∆w0 + L0

w

) (
L0
ww

)−1 (
L0
ww∆w0 + L0

w

)

−L0
w

(
L0
ww

)−1
L0
w
T + λT0

(
B0
w∆w0 +B0

)
. (4.4.18)

The first term in the right side of the above transformation is negative as Lww is negative
definite. Similarly, we have λT0

(
B0
w∆w +B0) ≤ 0 as λ0 ≥ 0 and B0

w∆w+B0 ≤ 0. Thus,
we find

X0 ≤ −L0
w

(
L0
ww

)−1
L0
w
T
. (4.4.19)

In order to obtain a similar estimate for Xk with k ∈ {1, . . . , n} we use the complementarity
relation (4.2.20) to find

Xk = −Lk − Lkx∆x+ ∆xTTk∆xT + sTk Ω−1
k Rk∆x

(4.2.20)= −1
2∆wTk Lkww∆wk + ∆wTk Bk

w
T
λ† + λTkBk −∆xTLxw∆w

= 1
2∆wTk Lkww∆wk + Lkw∆wk −∆λkBk

w∆wk + λ†
T
Bk
w∆wk + λTkBk

= 1
2
(
Lkww∆wk + Lkw

) (
Lkww

)−1 (
Lkww∆wk + Lkw

)

−1
2L

k
w

(
Lkww

)−1
Lkw

T + λTk

(
Bk
w∆wk +Bk

)
(4.4.20)
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108 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

Thus, we have

Xk ≤ −1
2L

k
w

(
Lkww

)−1
Lkw

T
. (4.4.21)

In the next step, we are interested in computing the directional derivative of the upper-level
merit function ΦU . For this aim, we use equation (4.4.14) to find

∂αΦU ≤ −∆xTKxx∆x+X0 −
n∑
k=1

χ†kXk −
n∑
k=1

(
χ̂+ χ†k

)
πk(Lk)

−
n∑
k=1

χ̂Lkw

(
Lkww

)−1
Lkw

T

≤ X0 −
n∑
k=1

χ†kXk −
n∑
k=1

χ̂kL
k
w

(
Lkww

)−1
Lkw

T
, (4.4.22)

where the last inequality holds strictly if ∆x 6= 0 as Kxx is assumed to be positive definite
and 0 ≤

∣∣∣χ†∣∣∣ < χ̂. Similarly, we compute the directional derivative of the lower level merit
functions using the formulas from Proposition 4.2 to find

X0 + ∂αΦ0
L

(4.4.19)
≤ −

∣∣∣L0
w

∣∣∣ (ρ̂0 − |ρ0|)− λ̂0π(B0) ≤ 0 (4.4.23)

as well as

Xk + 1
3∂αΦk

L

(4.4.21)
≤ −

∣∣∣Lkw∣∣∣ (1
3 ρ̂k −

1
2 |ρk|

)
− 1

3 λ̂kπ(Bk) ≤ 0 . (4.4.24)

as we assume ρ̂k > 3
2 |ρk|. Both estimates together yield

∂αΦ ≤
n∑
k=1

(
−2

3 χ̂k
∣∣∣Lkw∣∣∣ ρ̂k + χ̂k

∣∣∣Lkw∣∣∣ |ρk|) ≤ 0 , (4.4.25)

where we use again the assumption ρ̂k > 3
2 |ρk|. For the case that we have ∂αΦ = 0 all

the above inequalities must be tight. Collecting the corresponding conditions, we find that
this can only be the case if we have

∆x = 0 , π(Bj) = 0 , π(Li) = 0 ,
∣∣∣Ljw∣∣∣ = 0 (4.4.26)

∆wj = 0 , λTj Bj = 0 , and ρj = 0 . (4.4.27)
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for all i ∈ {1, . . . , n} and all j ∈ {0, . . . , n}. Thus, we conclude the statement of the
Theorem. �

Note that the above Theorem shows that we get either a descent direction of the merit
function Φ or λTj Bj = 0 is implied. This is surprising in the sense that we did not penalize
the complementarity condition in the function Φ. Indeed, this observation leads to the
following corollary:

Corollary 4.1: Let us assume that the penalty weights in the merit function Φ are
sufficiently large. Then every local solution of the unconstrained optimization problem

min
x,w,λ

Φ(x,w, λ) (4.4.28)

at which the regularity Assumptions 4.1, 4.2, and 4.4 are satisfied, is either an infeasible
stationary point or a KKT-point of the MPCC (3.4.1). Moreover, if there exists a solution
(x̂, ŵ, λ̂) of the unconstrained optimization problem (4.4.28) at which the regularity
Assumptions 4.1, 4.2, and 4.4 hold, then every solution of the MPCC (3.4.1) is also a
solution of the unconstrained optimization problem (4.4.28), i.e., the merit function Φ is
an exact penalty function.

Proof: Let us assume that we have a solution (x∗, w∗, λ∗) of the unconstrained penalty
problem (4.4.28) which is not a KKT point of the MPCC (3.4.1). Provided that (x∗, w∗, λ∗)
not an infeasible point, an application of the above sequential convex bilevel programming
method is well defined in the sense that a feasible step ∆z must exist - independent on
how we choose the positive definite matrix Kxx. As (x∗, w∗, λ∗) is assumed to be not a
KKT point it can easily be seen that we can not possibly satisfy all the conditions (4.4.12),
i.e., we get a descent direction of Φ, which is obviously a contradiction to our assumption
that (x∗, w∗, λ∗) is a local solution of the unconstrained penalty problem (4.4.28). Thus,
every local solution of the unconstrained optimization problem (4.4.28) must either be an
infeasible stationary point or a KKT point of the MPCC (3.4.1).

The other way round, let us assume that (x∗, w∗, λ∗) is a solution of the MPCC (3.4.1)
achieving the minimum objective value H0(x∗, w∗0). If this point is not a solution of the
unconstrained optimization problem (4.4.28) and not an infeasible stationary point, then
the solution (x̂, ŵ, λ̂) of (4.4.28) satisfies H0(x̂, ŵ0) < H0(x∗, w∗0), i.e., we can use the
above argumentation to show that (x̂, ŵ, λ̂) is a feasible KKT point of the MPCC (3.4.1)
with a lower objective value than the assumed solution (x∗, w∗, λ∗). This is a contradiction
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110 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

to the assumption that (x∗, w∗, λ∗) is a solution of the MPCC (3.4.1). Consequently, Φ
is an exact penalty function. �

Note that Theorem 4.2 and the corresponding Corollary 4.1 enable us to transfer the
traditional argumentation for the globalization of SQP methods [115, 182], i.e., we can
require an Armijo-Goldstein condition of the form
∼
Φ(α) ≤

∼
Φ(0) + ε α ∂α

∼
Φ(0) with Φ(α) := Φ(x+ α∆x,w + α∆w, λ+ α∆λ)

to be satisfied with some ε > 0, adjusting α via a line search such that a descent
of the iterations is guaranteed. Under some additional assumptions, i.e., feasibility of
the sub-problems, uniform boundedness of the multipliers χ, ρ, and λ, and the uniform
boundedness of Kxx and K−1

xx , the traditional global convergence statements from the
SQP theory transfer [115].

A Stopping Criterion

Note that within an implementation of the proposed method, we need a stopping criterion
to decide numerically when convergence is achieved. For this aim, we define the KKT-
tolerance ε of the sequential convex bilevel programming method analogous to SQP
methods as

εjL := Φj
L(x,wj , λj) =

∣∣∣∣∂Lj(x,wj , λj)∂w

∣∣∣∣ ρ̂j + λ̂Tj π(B(x,wj)) ,

εU := |∂αL0(x,w0, λ0)|+
n∑
k=1

χ̂k πk(Lk(x,wk, λk)) ,

and ε := εU + ε0L +
n∑
k=1

χ̂k ε
k
L . (4.4.29)

We can stop the method if ε < TOL is satisfied for a user-specified tolerance TOL, as the
above definition of the KKT tolerance ε measures the violation of the KKT conditions for
optimality. The sequential convex bilevel programming complete algorithm is visualized
within Figure 4.1.
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Sequential Convex Bilevel Programming:

Initialization:

1) Choose an initial guess z0 close to the local solution z∗ and specify
a termination tolerance TOL.

2) Evaluate the functions Hj , Bj , and Lj := Hj−λTj Bj together their
derivatives at z0 and store the corresponding nominal values Hj

and Bj , the first order sensitivities Hj
w, B

j
w, and Ljx, as well as the

second order terms Ljww and Ljx,w.
3) Choose a positive semi-definite initial Hessian approximation Kxx

and set z := z0.

Repeat:

4) Solve the min-max QP (4.2.1). As this min-max QP can equivalently
be written as a convex QCQP, we can either employ a tailored QCQP
solver (e.g. CVXGEN [166]) or use a hot-started SQP method which
can solve this convex sub-problem reliably.

5) Compute the KKT-tolerance ε from equation (4.4.29) and check
the stopping criterion ε < TOL. If this stopping criterion is satisfied,
we terminate the algorithm with z as the solution.

6) Update the iterate z+ = z+α∆z. Here, α ∈ (0, 1] can for example
be determined with the line search procedure from the previous
section using the merit function (4.4.2). Another option would be
to transfer the concept of trust region algorithms [60] or even filter
SQP methods [97]. However, the details of such approaches are
beyond the scope of this thesis.

7) Evaluate the functions Hj , Bj , and Lj := Hj −λTj Bj together with
their derivatives at the new point z+.

8) Choose a new Hessian approximation Kxx at the point z+.
9) Set z := z+ and continue with step 4).

Figure 4.1: An illustration of the sequential convex bilevel programming method.
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The Possible Loss of Superlinear Convergence for Non-Convex Problems and
Positive Definite Hessian Approximation

Being at this point, we have discussed the local and global convergence of the method
rather independently obtaining consistent results. However, the question which we have
not addressed so far is whether we can always satisfy the Dennis-Moré condition for
superlinear or quadratic convergence which is needed in Theorem 4.1. This is certainly
possible if we work with exact Hessians. For the case that the upper level problems are
convex these exact Hessian matrices will be positive definite and we can not encounter
problems with convexity of the sub-problems. The question is now whether we can work
with bounded and positive semi-definite Hessian approximations Kxx even if the exact
Hessian

∂2

∂x2L0(x∗, w∗0, λ∗0) +
n∑
k=1

χ∗k
∂2

∂x2Lk(x
∗, w∗k, λ

∗
k) (4.4.30)

is indefinite or negative definite still obtaining superlinear convergence. Although this
is for standard SQP methods the case [191], this will in general not be possible for our
sequential convex bilevel programming method. The corresponding effect has been worked
out for sequential linear conic programming methods by Diehl, Jarre, and Vogelbusch
in [77]. It was shown that sequential linear conic programming methods with bounded
positive definite Hessian cannot converge superlinearly for some non-convex problems.

In the following we will show that there exists an example for which the proposed sequential
convex bilevel programming method suffers from this Diehl-Jarre-Vogelbusch effect. For
this aim we consider the problem

min
x∈R2

−x2
1 − (x2 − 1)2

s.t. max
w∈R2

2xTw − 1− wTw ≤ 0
(4.4.31)

Applying the presented sequential convex bilevel programming strategy with the exact
Hessian Kxx = −2I2×2, the method converges independent of the starting point in one
step to the unique solution x∗ = w∗ = (0,−1)T .

The closest positive semi-definite approximation of the exact Hessian −2I2×2 would
be given by Kxx = 0. If we use this approximation the method converges linear with
convergence rate 1

2 . Note that this example is completely analogous to the one proposed
in [77] and thus the corresponding argumentation transfers.
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The Diehl-Jarre-Vogelbusch effect can never cause a problem if the original optimization
problem is convex as the exact Hessian is positive semi-definite in this case. However, for
general non-convex optimization problems we should be aware of the fact that there exist
non-convex cases in which the superlinear convergence is lost if we want to work with
positive semi-definite Hessian approximations.

4.5 A Numerical Test Example

In this section, we discuss a numerical application of the sequential convex bilevel
programming algorithm which has been developed within the previous sections. For
this aim, we consider once more the min-max problem from Example 3.2

min
x

(
x1 −

1
2

)2
+ x2

2 s.t.



0 ≥ max
‖w‖2≤ 1

3

1− (x1 + w1)2 − (x2 + w2)2

0 ≥ max
‖w‖2≤ 1

3

log (x1 + w1)− (x2 + w2)

0 ≥ max
‖w‖2≤ 1

3

− (x1 + w1)
(4.5.1)

Recall that this problem is lower level convex while the upper level problem turns out
to be non-convex. In order to start the sequential convex bi-level algorithm, we need a
suitable starting point. In our test this starting point is given by x0 :=

(
1
3 ,

3
2

)T
, while

the starting points for the lower level maximizers are at

w0
j :=

 1
3 Re

(
e(

1
2 + 2

3 j)iπ
)

1
3 Im

(
e(

1
2 + 2

3 j)iπ
)
 with i :=

√
−1 and j ∈ {1, 2, 3} .

This initial configuration is shown within Figure 4.2. The center of the circle corresponds
to the point x while the lower level maximizers wj are visualized as “distance keepers”,
which are expected to converge to the touching points between the constraint functions
and the uncertainty circle.

During the iteration, the constraints of the lower level maximization problem are violated,
as the ball-constraints are in every step of the method linearized and not exactly imposed.
In this example, the sequential convex bilevel programming algorithm converges with full
steps, i.e., the globalization routine would in this example in principle not be needed. The
following table shows the convergence behavior of the method:
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114 SEQUENTIAL ALGORITHMS FOR ROBUST OPTIMIZATION

Figure 4.2: The upper left part of the figure visualizes the initialization of the sequential
convex bilevel programming method, which is applied to problem (4.5.1). The upper right
part and the lower left part of the figure indicate intermediate results after the first and
second step of the method, respectively. After the 8-th step of the method convergence is
achieved and the corresponding result is visualized within the lower right part of the figure.

Iteration Number 1 2 3 4 5 6 7 8
− log10(KKT-TOL) 0.3 0.5 0.7 1.0 1.5 3.4 7.0 12.1

Here, the evaluation of KKT-tolerance is based on definition (4.4.29). Note that the
method converges reliably within 8 iteration and also the quadratic convergence behavior
can be observed, as the exact expression for the Hessian Kxx has been used.

Finally, we compare the sequential convex bilevel programming algorithm with standard
methods applied to the formulation (4.1.1): a standard SQP algorithm with BFGS updates
needs 28 iterations to achieve an comparable accuracy while the exact Hessian SQP variant
can solve the problem in 15 iterations. Thus, we may state that at least for this problem

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



A NUMERICAL TEST EXAMPLE 115

the sequential convex bilevel programming algorithm led to a significant improvement, as
it exploits the structure of min-max problems in a better way.

Remark 4.5: In the above case study, we have applied the sequential convex bilevel
programming algorithm exactly in the form in which it has been developed within the
previous sections. However, due to the particular problem structure several variants are
possible. For example, the convex quadratic lower level constraints of the form

wj ∈ B =
{
w ∈ R2

∣∣∣∣ ‖w‖22 ≤ 1
9

}
could also be kept in the sub-problems of the sequential convex algorithm. In this case we
have to solve min-max sub-problems of the form

min
∆x

max
w0+∆w0∈B

H0 +H0
x∆x+

(
1
2∆wT0 H0

ww + ∆xTH0
xw +H0

w

)
∆w0 + 1

2∆xTKxx∆x

s.t. max
wi+∆wi∈B

H i +H i
x∆x+

(
1
2∆wTi H i

ww + ∆xTH i
xw +H i

w

)
∆wi ≤ 0 ,

in order to obtain the steps ∆z. Similar to the standard variant of the sequential convex
bilevel programming algorithm these min-max sub-problems are convex and can be solved
with existing convex solvers, if duality is used to transform them explicitly into an equivalent
min-min problem. Numerical testing shows that the corresponding algorithm needs indeed
one step less while still achieving a comparable accuracy (but the min-max sub-problems are
also slightly more expensive). In this sense this variant can be considered as a reasonable
alternative to the sequential linearization of the convex constraints in the lower level
maximization problem.
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Part II

Robust Optimal Control
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Chapter 5

The Propagation of Uncertainty in
Dynamic Systems

5.1 Uncertain Nonlinear Dynamic Systems

In this section, we introduce the basic notation and concepts for the discussion of solutions
of uncertain linear and nonlinear dynamic systems. We assume that these dynamic systems
can be written as

∀τ ∈ R : ẋ(τ) = f( τ, x(τ), w(τ) ) with x(t1) = x1 . (5.1.1)

Here, f : R× Rnx × Rnw → Rnx denotes the possibly nonlinear right-hand side function,
x : R → Rnx the state, and w : R → Rnw an uncertain, possibly time-varying input.
Throughout this section, we assume that the function f is uniformly Lipschitz continuous
with respect to x and piecewise continuous in the other two arguments, such that we can
rely on the following well-known result [6]: for any given initial value x1 ∈ Rnx at time
t1 ∈ R and for any given (Lebesgue-integrable) input w : R → Rnw , we can guarantee
unique existence and prolongability of an associated solution x of the nonlinear differential
equation (5.1.1).

Now, our assumption on x1 and w is that they are bounded within a common uncertainty
set W, i.e., we only know that (x1, w) ∈ W. As a consequence, the solution x of the
differential equation (5.1.1) will in general not be unique anymore. In contrast to standard
dynamic systems, which typically allow one unique realization of the state, the solution of
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120 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

an uncertain dynamic system is set valued. Here, we define the set of reachable states
X(t) ⊆ Rnx at any time t ∈ [t1,∞) as follows:

X(t) :=

x(t) ∈ Rnx

∣∣∣∣∣∣∣
∃x(·), w(·) :
ẋ(τ) = f( τ, x(τ), w(τ) )
(x(t1), w) ∈ W for all τ ∈ [t1, t]

 . (5.1.2)

Intuitively, the set X(t) can be interpreted as the set of all states x(t) which we can
obtain by simulating the dynamic system on the time-horizon [t1, t] testing all possible
choices for the initial state and the uncertain input (x1, w) ∈ W.

We shall see in the following that the set X(t) is in general difficult to compute. However,
for some special cases it is possible to find explicit representations of the set valued
function X. Two such special cases are discussed within Examples 5.1 and 5.2.

Example 5.1: Let us consider a scalar but uncertain linear dynamic system of the form

ẋ = ax+ bw with a, b ∈ R .

We assume that the corresponding uncertainty set W is of the form

W := { (x1, w) | ∀t ∈ R : −1 ≤ w(t) ≤ 1 , x1 = c}

for some c ∈ R and t1 := 0. Now, it can easily be checked that the set X(t) of reachable
states at time t ∈ R+ is an interval. It can be written as

X(t) =
[
c eat − b

∣∣∣1− eat∣∣∣ , c eat + b
∣∣∣1− eat∣∣∣ ] .

In Figure 5.1 we can find a visualization of this set for a = −1, b = 1, and c = 1
2 .

Example 5.2: Let us regard the case that the dynamic system is linear, i.e., we have
f(t, x, w) = A(t)x+B(t)w for some functions A : R→ Rnx×nx and B : R→ Rnx×nw .
Clearly, the state of the dynamic system depends in this case linearly on the uncertainties
such that

x(t) = G(t, t1)x1 +
∫ t

t1
Ht(τ)w(τ) dτ .

Here, Ht(·) := G(t, ·)B(·) is the impulse response function and G : R × R → Rnx×nx
denotes the fundamental solution, which is defined as:

∂G(t, τ)
∂t

:= A(t)G(t, τ) with G(τ, τ) := I (5.1.3)
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UNCERTAIN NONLINEAR DYNAMIC SYSTEMS 121

Figure 5.1: Left: A visualization of the solution X(t) of the scalar uncertain dynamic
system from Example 5.1. Note that the solution of an uncertain dynamic system is a set
valued function (grey shaded area) rather than a single trajectory. Right: For the case that
the dynamic system is linear and the uncertainty bounded by an L2-norm, the reachable
sets X(t) are ellipsoids as discussed within Example 5.2. The set valued function X(·)
can in this case be imagined as a tube whose cross sections are ellipsoids in which the
state trajectories of the uncertain dynamic system can be guaranteed to be.

for all t, τ ∈ R. Now, if the set W is a (non-degenerate) ellipsoid, we may - after suitable
scaling of the states and uncertainty - assume that W can be written as

W :=
{

(x1, w)
∣∣∣∣ x2

1 +
∫ ∞
−∞
‖w(τ)‖22 dτ ≤ 1

}
.

In order to compute the set X(t) for a given time t, we first compute its support function

V (c) := max
x(t)∈X(t)

cTx(t) =
√
cT
(
G(t, t1)G(t, t1)T +

∫ t

t1
Ht(τ)Ht(τ)T dτ

)
c .

In this context, we observe that the matrix

Q(t) := G(t, t1)G(t, t1)T +
∫ t

t1
Ht(τ)Ht(τ)T dτ

can also directly be obtained by solving a Lyapunov differential equation of the form

∀τ ∈ [t1, t] : Q̇(τ) = A(τ)Q(τ) +Q(τ)A(τ)T +B(τ)B(τ)T with Q(t1) = 1 .

As the convex set X(t) is uniquely characterized by its support function (cf. Corollary 2.11
from Chapter 2), we must have X(t) = E(Q(t) ), i.e., the set of reachable states is at each
time t ≥ t1 an ellipsoid. This observation has for example been used in [124, 126, 160, 173].
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122 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

Unfortunately, it is difficult to make statements about the geometry of the set X(t) in
the general case. In Examples 5.1 and 5.2, we have seen that the set X(t) turns out
to be an interval or an ellipsoid, but both examples were based on the assumption that
the dynamic system is linear. However, we have to be aware of the fact that even if the
dynamic system is linear, the question of how to compute the set X(t) can be non-trivial
depending on our assumptions on the uncertainty set.

Definition of the Set-Propagation Operator

The aim of the following consideration is to formalize the construction of reachable sets
of nonlinear dynamic systems. For this theoretical purpose, we first introduce a very basic
assumption on the uncertainty set W:

Assumption 5.1: We assume that the uncertainty set W can be written in the following
uncorrelated form

W = { (x1, w) | x1 ∈ X1 and w(τ) ∈W (τ) for all τ ∈ R } .

Here, the sets X1 ⊆ Rnx and W (τ) ⊆ Rnw are assumed to be given for all times τ ∈ R.

Note that the above assumption is restricting as it excludes for example the case that the
uncertainty set contains L2-bounded inputs recalling our considerations from Example 5.2.
Here, the L2-bounded uncertainties are very interesting in the sense that we can for
uncertain linear systems compute the reachable sets exactly by solving a simple Lyapunov
differential equation. Nevertheless, we might argue that Assumption 5.1 is not too
restrictive for most of the practical applications, as we are often able to formulate the
dynamic system in such a way that the uncertainties do not correlate in time. In particular,
the case that we have an uncertain time constant parameter can be re-formulated by
introducing additional state variables - this will be discussed in more detail in Section 6.1.

Once we accept Assumption 5.1, it is easier to investigate how the uncertainty propagates
through the dynamic evolution leading to a consistent mathematical notation which we will
later employ to formulate robust optimal control problems. Here, we follow the classical
concept of robust positive invariant tubes [35, 36, 195] as well as the theory on set valued
(or multi-valued) differential equations [65].
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Let us start with the definition of the set F(t1, t2) of feasible state and uncertainty
realizations on the interval [t1, t2] ⊆ R, which we define as

F(t1, t2) :=
{

(x,w)
∣∣∣∣∣ ẋ(τ) = f( τ, x(τ), w(τ) )
w(τ) ∈ W (τ) for all τ ∈ [t1, t2]

}
.

Now, we introduce the set propagation operator T (t2, t1) : Π(Rnx)→ Π(Rnx) , which is
associated with the uncertain differential equation. It is defined for all sets X1 ⊆ Rnx
and for all t1, t2 ∈ R with t1 ≤ t2:

T (t2, t1)[X1] := { y ∈ Rnx | ∃(x,w) ∈ F(t1, t2) : x(t1) ∈ X1 and x(t2) = y } .

In this context, we use the set notation Π(Y ) := {X | X ⊆ Y } to denote a power set,
i.e., the set of all subsets (including the empty set), of any given set Y . Note that the
rather abstract set notation of the form

X2 = T (t2, t1)[X1]

is nothing but a concise way to say that X2 is the reachable set of the dynamic system at
time t2 assuming that the initial value of the differential equation at time t1 is known to be
in the set X1, while the uncertain input w satisfies w(τ) ∈W (τ) for all times τ ∈ [t1, t2].

Associativity of the Set-Propagation Operator

In the following, we will denote the set of all propagation operators, which are associated
with the differential equation f , with the symbol T . Now, if we regard two consecutive
set propagation operators T (t3, t2) and T (t2, t1) for some t1, t2, t3 ∈ R with t1 ≤ t2 ≤ t3,
their composition ◦ : T × T → T can be defined by

T (t3, t2) ◦ T (t2, t1) := T (t3, t1) .

This composition satisfies the following fundamental property:

Proposition 5.1 (Associativity): The pair (T , ◦) satisfies for any three consecutive
operators T (t1, t2), T (t2, t3), T (t3, t4) ∈ T with t1 ≤ t2 ≤ t3 ≤ t4 the associativity
relation

(T (t4, t3) ◦ T (t3, t2) ) ◦ T (t2, t1) = T (t4, t3) ◦ (T (t3, t2) ◦ T (t2, t1) ) .
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124 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

In particular, for the case that the dynamic system is autonomous, the pair (T , ◦) can be
interpreted as a semi-group, as summarized in the following remark.

Remark 5.1 (Set-Propagation Semi-Group): If the right-hand side function f does
not explicitly depend on the time τ while the set W (τ) = W is also autonomous, the
operator T (t2, t1) can be notated as T (t2 − t1) ≡ T (t2, t1), i.e., the propagation depends
on the difference t2 − t1 only. Thus, the definition of the composition takes the form of a
homomorphism

∀∆t1,∆t2 ∈ R+ : T (∆t1) ◦ T (∆t2) = T (∆t1 + ∆t2) .

I.e., (T , ◦) ∼= (R+,+) turns out to be a semi-group, which is isomorphic to the additive
semi-group of non-negative real numbers.

Note that the operators of the form T (τ, t1) generate for every given set X1 ⊆ Rnx an
associated orbit X : [t1, t2]→ Π(Rnx) which is on the interval [t1, t2] defined as

∀τ ∈ [t1, t2] : X(τ) := T (τ, t1)[X1] .

Due to the associativity of the pair (T , ◦) we can also construct the orbit X formally via
a sequence of the form

X(τ + dτ) = T (τ + dτ, τ)[X(τ)] ,

which is started at X(t1) = X1 and which propagates with infinitesimal step-sizes dτ .
Recall that this forward construction of the reachable set is possible due to Assumption 5.1,
i.e., due to the fact that the uncertainty does not correlate in time. In order to express
this infinitesimal forward generation within an intuitive notation, we employ the following
formal definition:

Definition 5.1 (Infinitesimal Set-Generation): We say that a set-valued function of
the form X : [t1, t2]→ Π(Rnx) satisfies a formal differential equation of the form

∀τ ∈ [t1, t2] : X(τ+) = F (τ,X(τ),W (τ)) ,

if and only if we have X(τ) := T (τ, t1)[X(t1)] for all τ ∈ [t1, t2]. Here, F is the
infinitesimal generator of the pair (T , ◦), which can formally be written as

F (τ,X(τ),W (τ)) := T (τ + dτ, τ)[X(τ)] .
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UNCERTAIN NONLINEAR DYNAMIC SYSTEMS 125

Our notation of the reachable set depends in the following considerations always on the
context. The notation in form of the above formal differential equation has the advantage
that it highlights the similarity between the propagation of a vector valued state x through
a deterministic differential equation and the propagation of a set-valued state X through
an uncertain differential equation. This notation is especially intuitive if we want to get
clear about dependencies. For example, we might have a differential equation of the form

∀τ ∈ [t1, t2] : ẋ(τ) = f(τ, u(τ), x(τ), w(τ)) ,

which depends additionally on a control input u. In this case, we will write the associated
set-valued differential equation in the form

∀τ ∈ [t1, t2] : X(τ+) = F (τ, u(τ), X(τ),W (τ))

in order to make clear that the propagation of the associated reachable sets X can be
influenced by the control input u. It might also help to be aware of the fact that the
above notation trivially transfers to discrete-time systems, for which the set propagation
has the form Xk+1 = F (k, uk, Xk,Wk) . In this and the following chapter our focus is
on continuous-time systems, but it is a general remark that most of the considerations
transfer one-to-one to discrete-time systems as well.

Monotonicity of the Set-Propagation Operator

Besides the above fundamental associativity property, we also observe that the operator
T (t2, t1) satisfies a monotonicity relation which can be stated as follows:

Proposition 5.2 (Monotonicity): Let X ⊆ Y ⊆ Rnx be two sets, one contained in the
other. Then we have an inclusion of the form

T (t2, t1)[X] ⊆ T (t2, t1)[Y ] .

This result holds for all t1, t2 ∈ R with t1 ≤ t2.

Motivated by this monotonicity relation, we introduce the following notation of robust
positive invariant tubes:

Definition 5.2 (Robust Positive Invariant Tubes): A set-valued function of the form
X : [t1, t2]→ Π(Rnx) is called a robust positive invariant tube on the interval [t1, t2], if
the inclusion

X(t′) ⊇ T (t′, t)[X(t)]
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126 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

is satisfied for all t, t′ ∈ [t1, t2] with t′ ≥ t. This condition can alternatively also be written
in form of a relaxed differential equation of the form

∀τ ∈ [t1, t2] : X(τ+) ⊇ F (τ,X(τ),W (τ)) ,

if we transfer our formal notation of infinitesimal set generation.

Note that if a function X : [t1, t2]→ Rnx is a robust positive invariant tube, this implies
that once we know that the current state x(t) is at a given time t ∈ [t1, t2] inside this
tube, i.e., x(t) ∈ X(t), we also know that it will be inside this tube for all future times
t′ ∈ [t, t2], i.e., x(t′) ∈ X(t′) - no matter how the uncertainty w is realized. In other words,
if we find a computationally tractable way to generate robust positive invariant tubes, we
also have a way to generate outer approximations of reachable sets.

5.2 Robust Positive Invariant Tubes for Linear Dynamic
Systems

The main difficulty with uncertain dynamic systems of the form (5.1.1) is that we are
not interested in a single vector-valued solution x for one particular realization of the
uncertainties, but in a set-valued function X, as introduced in equation (5.1.2). An accurate
numerical computation of the reachable set X(t) is in principle possible by discretizing
the function X in space and time and searching for a suitable numerical realization of the
generating operator T (t+ dt, t) for a small but positive step size dt. Such a technique
has for example been suggested in [170] where the time-dependent reachable sets are
represented via level set functions which satisfy a Hamilton-Jacobi-Isaacs equation. Here
discretization techniques inspired from the field of partial differential equations can be
exploited. However, we should be aware of the fact that such techniques, which are exact
up to a small numerical error, will be limited to small state dimensions nx. For larger
state dimensions, we encounter the natural tradeoff between accuracy and tractability,
which appears in similar versions throughout almost all fields of robust optimization.

As we have already outlined in the previous section, the notation of robust positive invariant
tubes is a very powerful concept to deal with outer approximations of reachable sets. The
aim of this section is to outline computationally tractable techniques in order to compute
parameterized robust positive invariant tubes, which shall later be employed for solving
robust optimal control problems in a conservative approximation.
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In order to develop these computational techniques, we have to specialize our assumptions
on the uncertainty set. Based on the notation from Assumption 5.1, we propose to model
the set W (τ) for the uncertain input w(τ) at any time τ ∈ R as follows:

Assumption 5.2: Let us employ the notation

∆n :=
{
λ ∈ Rn++

∣∣∣∣∣
n∑
i=1

λi = 1
}

to denote the half-open unit simplex as introduced within Chapter 2. We assume that the
uncertainty set W (τ) ⊆ Rnw has for all τ ∈ R the form

W (τ) := {w ∈ Rnw | ∀λ ∈ ∆n : w ∈ E( Ωτ (λ) ) } (5.2.1)

Here, Ωτ : Rn++ → Snw+ is assumed to be an anti-homogeneous matrix valued map, i.e., we
assume that we have for every α > 0 and every λ ∈ Rn++ the relation Ωτ (αλ) = 1

αΩτ (λ).

Note that the above modeling assumption is sufficient to approximate all compact, convex,
and point-symmetric uncertainty sets W (τ). Thus, the assumption that W (τ) has these
three properties is not a main restriction for most practical applications. In order to
illustrate how we can work with Assumption 5.2, we regard Examples 5.3, 5.4, and 5.5,
where possible choices for the function Ωτ are discussed.

Example 5.3: If we employ the choice Ωτ (λ) := 1
λI and n = 1 in equation (5.2.1), we

obtain the set
W (τ) = {w | w(τ)Tw(τ) ≤ 1 } .

More generally, the choice Ωτ (λ) := 1
λΣ(τ) ∈ Snw+ allows us to require that w(τ) is at

every time τ bounded by an ellipsoidal uncertainty set of the form E(Σ(τ)).

Example 5.4: Having Theorem 2.4 from Chapter 2 in mind, we can employ an anti-
homogeneous function of the form

Ωτ (λ) :=
n∑
i=1

1
λi

Σi

for some positive semi-definite matrices Σi ∈ Snw+ . This allows us to model the case
that w(τ) is at each time τ known to be in the set ∑n

i=1 E(Σi), which is a finite sum of
ellipsoids. In particular, we can model the set

W (τ) = {w | ‖w(τ) ‖∞ ≤ 1 }
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128 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

by choosing Ωτ (λ) := diag(λ)−1 and n = nw, as the unit cube in Rnw is a sum of nw
degenerate ellipsoids (c.f. Example 2.14 from Chapter 2). In other words, the above
assumption allows us to formulate simple component-wise bounds on the uncertainty. More
generally, if the uncertainty set is a zonotope, it can be modeled with Assumption 5.2.

Example 5.5: Note that we can employ the anti-homogeneous choice

Ωτ (λ) :=
(

n∑
i=1

λiΣ−1
i

)−1

for some positive definite matrices Σi ∈ Snw++. This allows us to model the case that w(τ)
is at each time τ known to be in the intersection of n centered ellipsoids E(Σi). This can
easily be shown by using the Theorem 2.2 from Chapter 2. As mentioned above, we can in
principle approximate every compact, convex, and point-symmetric set by an intersection
of ellipsoids - in this sense, we may regard Assumption 5.2 as a quite powerful modeling
tool.

In the following consideration, we plan to employ Assumption 5.2 as a basis for the
construction of parameterized robust positive invariant tubes. Here, we first concentrate
on constructive methods for linear dynamic systems, which will later be generalized for
nonlinear dynamics as well.

Ellipsoidal Methods for Linear Dynamic Systems

For the case that the right-hand side function f is linear, we can write the uncertain
dynamic system in the form

∀τ ∈ R : ẋ(τ) = A(τ)x(τ) +B(τ)w(τ) , (5.2.2)

Here, A : R→ Rnx×nx and B : R→ Rnx×nw are assumed to be L1-integrable functions.
Recall that the fundamental solution G : R× R→ Rnx×nx of this linear system is given
by

∀t, τ ∈ R : ∂G(t, τ)
∂t

:= A(t)G(t, τ) with G(τ, τ) := I . (5.2.3)

Our consideration will be based on Assumption 5.2, which specifies the uncertainty
constraints for the input w. Recall that this assumption implies that the uncertainty
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ROBUST POSITIVE INVARIANT TUBES FOR LINEAR DYNAMIC SYSTEMS 129

sets W (τ) are compact, convex, and point-symmetric with respect to the origin. One of
the main advantages of the analysis of linear dynamic systems is that we can formulate
conservation laws for these three properties, which are summarized within the following
proposition:

Proposition 5.3 (Conservation Laws of Linear Uncertainty Propagation): Let us as-
sume that the functions A and B are L1-integrable and let X(t) := T (t, t1)[X1] be the
reachable set at some time t ≥ t1, which is associated with some given initial uncertainty
set X1 ⊆ Rnx . Then the following conservation laws hold:

1. If the sets X1 and W (τ) are for all τ ∈ [t1, t] compact, then X(t) is compact.

2. If the sets X1 and W (τ) are for all τ ∈ [t1, t] convex, then X(t) is convex.

3. If the sets X1 and W (τ) are for all τ ∈ [t1, t] point-symmetric with respect to the
origin, then X(t) is point-symmetric with respect to the origin.

In summary, if the sets W (τ) are compact, convex, and point-symmetric, then the operator
T (t, t1) preserves compactness, convexity, and point-symmetry.

Proof: For the proof of the conservation of compactness, we have to use the assumption
that the functions A and B are L1-integrable. As the required techniques for the proof are
rather technical and not the focus of this thesis, we refer at this point to [218], where a
mathematical proof of the statement can be found. Concerning the second statement, we
know that X(t) is convex if the uncertainty sets X1 and W (τ) are all convex, as a linear
transformation preserves convexity. A similar argumentation can be applied for the last
statement, as a linear map does not only preserve convexity but also point-symmetry. �

Note that if we employ Assumption 5.2, all the conservation laws for the operator T (t, t1)
apply. This implies in particular, that we can apply the convex optimization techniques
from Chapter 2, i.e., the set X(t) := T (t, t1)[X1] can under the mentioned assumptions
uniquely be characterized via its support function. For the following technical consideration,
we assume for a moment that the set X1 := E(Q1) is a given ellipsoid with Q1 ∈ Snx+ ,
i.e., our knowledge about the initial state x(t1) is of the form x(t1) ∈ X1. However,
this assumption is only introduced for some intermediate simplifications, but will later, in
the “initial value free” formulation of the main result (see Theorem 5.1), not be needed
anymore.
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130 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

In order to construct the support function of the set X(t), we have to compute the
maximum excitation of the linear dynamic system

V (t, c) := max
ξ∈X(t)

cT ξ

at some time t ≥ t1 in a given direction c ∈ Rnx . Here, we may also represent V (t, c) in
a more expanded form, which is given by

V (t, c) = max
x(·),w(·)

cTx(t) s.t.


for all τ ∈ [t1, t] :
ẋ(τ) = A(τ)x(τ) +B(τ)w(τ)
x(t1) ∈ X1
w(τ) ∈ W (τ) .

(5.2.4)

The above maximization problem can be regarded as an infinite dimensional convex
optimization problem. Note that the maximum exists, as X(t) is compact. We assume for
simplicity that there is a feasible point such that we can compute V via a minimization
problem by passing to the dual problem. For this aim, we first express the state function
x of the linear dynamic system explicitly as

∀t ≥ t1 : x(t) = G(t, t1)x(t1) +
∫ t

t1
Ht(τ)w(τ) dτ , (5.2.5)

recalling that Ht(·) := G(t, ·)B(·) denotes the impulse response function and G the
fundamental solution, as defined in (5.2.3). Now, the dual of the problem defining the
function V can be written as

V (t, c) = inf
λ(·)

inf
µ>0
ν(·)>0

1
µ
Q1 +

∫ t

t1

cTHt(τ)Ωτ (λ(τ))Ht(τ)T c
4 ν(τ) dτ + µ +

∫ t

t1
ν(τ) dτ

s.t. λ(τ) ∈ ∆n for all τ ∈ [t1, t] ,

where the time-varying multiplier ν : R → R+ has been introduced to account for the
parameterized constraints on the uncertainty which have the form w(τ) ∈ E( Ωτ (λ) )
while the scalar multiplier µ ∈ R+ takes care of the initial value inclusion x(t1) ∈ E(Q1 ).
Finally, we use the assumption that the function Ωτ is anti-homogeneous, i.e., we have

1
ν(τ)Ωτ (λ(τ)) = Ωτ (ν(τ)λ(τ))
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such that we can rescale both the function λ and the multiplier µ writing the support
function V in the form

V (t, c) = inf
Q(t),µ>0,λ(·)>0

√
cTQ(t) c s.t.

Q(t) =
(

1
µQ1 +

∫ t
t1
Ht(τ)Ωτ (λ(τ))Ht(τ)Tdτ

) (
µ+

∫ t
t1

∑n
i=0 λi(τ)dτ

)
.

(5.2.6)

As the above equation for the support function V (t, c) of the closed and convex set X(t)
holds for all directions c, we obtain an ellipsoidal outer approximation (compare with
Example 2.11 from Chapter 2):

Lemma 5.1: Let Assumption 5.2 for the input uncertainty set be satisfied and let µ > 0
be a given positive constant and λ : [t1, t]→ R++ a function such that the integrals in
the definitions

P (t) := 1
µ
Q1 +

∫ t

t1
Ht(τ)Ωτ (λ(τ))Ht(τ)T dτ and r(t) := µ+

∫ t

t1

n∑
i=0

λi(τ)dτ

exist. Then we have an inclusion of the form

X(t) = T (t, t1)[ E(Q1 ) ] ⊆ E(Q(t) ) ,

i.e., the set of reachable states is contained in an ellipsoid of the form E(Q(t) ), where we
use the notation Q(t) := r(t)P (t).

Note that the above Lemma can be regarded as a useful tool which can be employed to
generate ellipsoidal outer approximations numerically. Here, the matrix P (t) can also be
obtained by a forward simulation of a Lyapunov differential equation of the form

∀τ ∈ [t1, t] : Ṗ (τ) = A(τ)P (τ) + P (τ)A(τ)T +B(τ)Ωτ (λ(τ))B(τ)T

with P (t1) = 1
µQ1 .

(5.2.7)

Note that Lyapunov differential equations are well-known since a long time [163, 34]. The
fact that the function

P (τ) = 1
µ
Q1 +

∫ τ

t1
Ht(τ)Ωτ (λ(τ))Ht(τ)T dτ

satisfies the differential equation (5.2.7) can simply be checked by using the definition of
Ht together with the differential equation (5.2.3).
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132 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

In the next step, we discuss an alternative way to formulate Lemma 5.1. The aim of
this alternative formulation is to avoid an explicit specification of the set X1 of uncertain
initial states such that the associativity of the propagation operators in the set T with
respect to composition is reflected in the formulation of the approximation strategy:

Theorem 5.1: Let Assumption 5.2 for the input uncertainty set be satisfied and let
Q : [t1, t2]→ Snx+ and κ : [t1, t2]→ Rn++ be any functions which satisfy for all τ ∈ [t1, t2]
a differential equation of the form

Q̇(τ) = A(τ)Q(τ) +Q(τ)A(τ)T +
n∑
i=1
κi(τ)Q(τ) +B(τ)Ωτ (κ(τ))B(τ)T .

Then the function X(·) := E(Q(·) ) is a robust positive invariant tube on the given time
interval [t1, t2].

Proof: The main idea of the proof is to directly derive a differential equation for the
function Q(t) := r(t)P (t) for t ∈ [t1, t2]. For this aim, we employ the chain rule:

Q̇(τ) = ṙ(τ)P (τ) + r(τ)Ṗ (τ)

=
[
n∑
i=1

λi(τ)
]
P (τ) +A(τ)Q(τ) +Q(τ)A(τ)T + r(τ)B(τ)Ωτ (λ(τ))B(τ)T

=
∑n
i=1 λi(τ)
r(τ) Q(τ) +A(τ)Q(τ) +Q(τ)A(τ)T +B(τ)Ωτ

(
λ(τ)
r(τ)

)
B(τ)T .

In the last step we have used that the function r is for all τ ∈ [t1, t] strictly positive:

r(τ) = µ+
∫ τ

t1

n∑
i=1

λi(τ ′) dτ ′ ≥ µ > 0 .

The statement of the Theorem follows now by introducing the new re-scaled multiplier
function κ(τ) := λ(τ)

r(τ) , which is well-defined for all τ ∈ [t1, t]. �

Remark 5.2: Theorem 5.1 as well as Theorem 5.2 have been proposed in similar versions
in the work of Kurzhanski and Varaiya [146, 144], who were among the pioneers of
ellipsoidal methods for linear dynamic systems. In this context, we also refer to the work
of Schweppe and Glover [102, 209] as well as Brockman and Corless [47]. In this thesis,
we present these existing ellipsoidal techniques for linear dynamic systems in a uniform
framework which is based on Assumption 5.2.
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Remark 5.3: Note that the new function κ is in the proof of Theorem 5.1 constructed
from the function λ via the re-scaling relation

κ(τ) := λ(τ)
r(τ) = λ(τ)

λ0 +
∫ τ

0
∑n
i=1 λi(τ ′) dτ ′ .

For a fixed λ0 > 0, this definition can be interpreted as a bijective change of variables.
Here, the inverse construction of the function λ from the function κ is given by

λ(τ) = λ0κ(τ) exp
(∫ τ

0

n∑
i=1

κi(τ ′) dτ ′
)

for all τ ∈ [t1, t2]. Clearly, we cannot recover the initial constant λ0 together with the
function λ as the original parameterization in the λ-variables was scaling invariant, while
the parameterization in κ avoids this type of scaling indefiniteness.

Note that the differential equation for the matrix valued function Q is a Lyapunov
differential equation for any given function κ. Thus, if we choose an initial value Q(t1)
at time t1, the solution Q(t2) = Γ(t2, t1)[Q(t1)] of the differential equation at time
t2 depends affinely on Q(t1), i.e., the associated propagation operator Γ(t2, t1) is affine.
Moreover, we can define a composition of the form

Γ(t3, t2) ◦ Γ(t2, t1) := Γ(t3, t1)

for t1 ≤ t2 ≤ t3. This implies that the propagation operators which generate the
parameterized robust positive invariant ellipsoidal tube E(Q(·)) are associative with
respect to composition.

On the one hand, Theorem 5.1 provides only one way to construct robust positive invariant
tubes. However, on the other hand, due to the fact that the construction of the ellipsoidal
outer approximation is parameterized in the function κ we might nevertheless obtain
sufficient flexibility to adapt to the particular situation, we are optimizing for. In order
to illustrate this aspect, we highlight once more that we can always achieve that the
ellipsoidal approximation is exact in a given direction:
Theorem 5.2: Let c ∈ Rnx \ {0} be any given direction. Then the support function
V (t, c), which is defined in (5.2.4), can for all t ∈ [t1,∞) be written as

V (t, c) = inf
Q(·),κ(·)>0

√
cTQ(t)c s.t.

Q̇(τ) = A(τ)Q(τ) +Q(τ)A(τ)T +
n∑
i=1
κi(τ)Q(τ) +B(τ)Ωτ (κ(τ))B(τ)T

Q(t1) = Q1

(5.2.8)
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134 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

Figure 5.2: Left: a sketch of the pendulum. Right: a visualization of the set X(t) of
reachable states at the time t = 1.2 s under the assumption that the uncertain force
w satisfies |w(τ)| ≤ 1 N for all τ ∈ [0, t]. Note that this 2-dimensional set has been
computed for visualization purposes. In order to obtain such a visualization, we computed
the associated support function V (t, c) for many directions c ∈ R2 with ‖c‖2 = 1 such
that a sufficient resolution is obtained.

In other words, the ellipsoid E(Q(t) ) , given by the solution of the above optimal control
problem, contains the set X(t) of reachable states and touches it in the desired directions
c and −c.

Proof: The statement of the theorem uses the fact that equation (5.2.6) holds with
equality. Note that the optimization problems (5.2.6) and (5.2.8) are equivalent as a
change of variables does not affect the objective value. �

In order to illustrate and visualize, how the above Theorem 5.2 can be used in practice,
we consider Example 5.6.

Example 5.6: We regard the case that the matrix valued functions A and B are for all
τ ∈ [0, t] explicitly given by

A(τ) :=
(

0 1
− g
L 0

)
, and B(τ) :=

(
0
− 1
mL

)
.

The corresponding dynamic system can be interpreted as the linearized dynamics of a
pendulum with length L and mass m, where the state x(t) := (ϕ(t), ω(t))T represents
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ROBUST POSITIVE INVARIANT TUBES FOR LINEAR DYNAMIC SYSTEMS 135

Figure 5.3: A visualization of some ellipsoidal outer approximations of the set X(t) for the
pendulum from Example 5.6. The approximations have been found by solving the optimal
control problem (5.2.8) for various directions c ∈ R2. Note that the ellipsoids touch the
set X(t) in the desired direction.

the excitation and angular velocity of the pendulum, while w is an uncertain force with
|w(τ)| ≤ 1 N acting at the mass point.

Figure 5.2 shows a sketch of the pendulum as well as a visualization of the set X(t) of
reachable states at time t = 1.2 s simulating the pendulum with the concrete values
L := 1 m, g := 9.81 m

s2 , and m := 1 kg.

Theorem 5.2 gives us a practical tool to compute ellipsoidal outer approximations which
are tight in the sense that they touch the set X(t) in a given direction. Note that there are
efficient tools available to solve optimal control problems of the form (5.2.8). Figure 5.3
shows some tight ellipsoidal outer approximations which have been computed by solving
the optimal control problem (5.2.8) numerically choosing various directions c ∈ R2.

Note that the optimal control problem (5.2.8) from Theorem 5.2 is in general a non-
convex optimization problem. In Example 5.6 we have used a standard nonlinear optimal
control solver, which finds in general only local solutions of optimal control problems.
Nevertheless, in Example 5.6 the numerical experience is that local search routines (based
on Newton type methods) have absolutely no problem to converge to the global solution
– independently of the initialization. For the example which is shown in Figure 5.3 we
can clearly observe that the ellipsoids found by the local optimization routine touches
the set X(t) as expected. Is this always the case? In the following consideration we will
show that under mild conditions on the function Ωτ , we can indeed prove that every local
minimizer of the optimal control problem (5.2.8) is also a global minimizer.
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136 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

For this aim, we introduce an additional assumption on the function Ωτ such that the
optimal control problem (5.2.8) can equivalently be transformed into a convex optimization
problem:

Assumption 5.3: We assume that the function Ωτ is not only anti-homogeneous but
also chosen in such a way that the function χτ : Rnx × Rn++ → R defined as

∀c ∈ Rnx ,∀ν ∈ Rn++ : χτ (c, ν) := cT Ωτ ( eν ) c (5.2.9)

is a convex function in ν for all c ∈ Rnx . Here, the exponential function is defined
component-wise, i.e., such that exp(ν) := ( exp(ν1), . . . , exp(νn) )T .

Example 5.7: If we model the uncertainty set as a sum of ellipsoids, i.e., if we employ
the function Ωτ (λ) =

∑n
i=1 λ

−1
i Wi with positive semi-definite matrices Wi ∈ Sn+, the

above assumption is satisfied, as the function

χτ (c, ν) =
n∑
i=1

cT Wi c e
−νi

is obviously convex in ν.

Example 5.8: If we model the uncertainty set as an intersection of centered ellipsoids,
i.e., if we employ the function Ωτ (λ) = (

∑n
i=1 λiWi)−1 with positive definite matrices

Wi ∈ Sn++, it can also be verified that the corresponding function χ is convex in ν.

Now, the idea is to use Assumption 5.3 together with Remark 2.8. If Assumption 5.3
holds, problem (5.2.8) can be interpreted as a (generalized) geometric optimal control
problem. More precisely, we can perform a variable substitution of the form λi(τ) := eνi(τ)

such that the optimal control problem (5.2.8) can equivalently be tranformed into an
optimization problem of the form

[V (t, c)]2 = inf
ν(·)

∫ t

0

(
cTHt(τ) Ωτ

(
eν(τ)

)
Ht(τ)c

) ∫ t

0

n∑
j=1

eνj(τ
′) dτ ′

 dτ

= inf
ν(·)

∫ t

0

∫ t

0

n∑
j=1

χτ
(
Ht(τ)c , ν(τ)− νj(τ ′)1

)
dτ dτ ′ .

This is a convex optimization problem, as the function χ is convex in its second argument
and the (infinite) sum over convex functions remains convex. It depends on the context
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UNCERTAINTY PROPAGATION IN NONLINEAR DYNAMIC SYSTEMS 137

and our aim whether it is more suitable to write the optimization problem in the above
convex form or in the form of problem (5.2.8) from Theorem 5.2. Both formulations
are equivalent, which implies in particular that if Assumption 5.3 holds, then every local
minimum (infimum) of the optimal control problem (5.2.8) is also a global minimum
(infimum).

5.3 Uncertainty Propagation in Nonlinear Dynamic Systems

In this section, we discuss how to conservatively approximate the set of reachable states
for an uncertain nonlinear dynamic system of the form

∀τ ∈ [t1, t2] : ẋ(τ) = f(τ, x(τ), w(τ)) .

Here, the aim is - as in the consideration of linear dynamic systems - to construct a
parameterized robust positive invariant tube, i.e., a set valued function of the form
X : [t1, t2]→ Π(Rnx) which satisfies

∀τ ∈ [t1, t2] : X(τ+) ⊇ F (τ,X(τ),W (τ)) .

Unfortunately, nonlinear dynamic systems are in general much more difficult to treat than
linear systems. In order to understand the problem, we consider a nonlinear version of
Example 5.6:

Example 5.9: Let us consider the following nonlinear pendulum model of the form

ϕ̇(t) = ω(t)

ω̇(t) = − g
L

sin(ϕ(t)) + cos(ϕ(t))w(t) + sin(ϕ(t))v(t)
mL

.

Here, w is an unknown horizontal force satisfying |w(t)| ≤ 1 N. Moreover, v is an unknown
vertical force satisfying |v(t)| ≤ α. Note that the force v is completely overseen if we
linearize the model equations around the steady state. Here, the linearized version of
the above model equations coincides with the linear example from the introduction. In
Figure 5.4, we can find a sketch of the pendulum model as well as a visualization of
the set of reachable states X(t) at the time t = 1.2 s. In this example we have used
α := 3 N. Unfortunately, the nonlinear set X(t) is larger than the corresponding set of
reachable states for the linearized equations. Thus, our example illustrates that it is in
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138 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

Figure 5.4: In the right part of the figure a sketch of the nonlinear pendulum model is
shown while the visualization in the middle shows the set XN of reachable states of this
nonlinear model (dashed line) as well as the set XL of reachable states of the associated
linear approximation. In this example, XN contains the set XL illustrating that it is in
general not enough to regard the linear approximation only. The right part of the figure
shows a conservative and sub-optimal ellipsoidal outer approximation of the set XN.

general too optimistic to consider linear approximations only. In particular, if we choose a
very large upper bound α of the vertical force we can show that the linear approximation
can be arbitrarily bad. Note that in the example which is visualized in Figure 5.4 the set
X(t) of the reachable states seems convex. However, this is by accident. For general
nonlinear systems, we do not know anything about the structure of the set X(t). The aim
of the following considerations will be to compute at least sub-optimal ellipsoidal outer
approximations of the set X(t) as outlined in the right part of Figure 5.4.

Construction of Nonlinearity Estimates

In order do deal with a nonlinear right-hand side, we first introduce the central path, i.e., the
trajectory which the state of the nonlinear dynamic system would follow if no uncertainties
were present. Here, we assume that the point-symmetric uncertainty sets W (τ) for the
input w are given by Assumption 5.2 such that the central input, i.e., w(τ) = 0 for all
τ ∈ R, corresponds to the case when there is no uncertainty. Moreover, we assume that our
knowledge about the state x(t1) at the time t1 is of the form x(t1) ∈ X1 := E(Q1, q1),
where q1 ∈ Rnx is the central initial value. The central path (or reference function)
q : [t1,∞)→ Rnx is now defined to be the solution of the nominal differential equation

∀τ ∈ [t1,∞) : q̇(τ) = ϕ(τ, q(τ)) := f(τ, q(τ), 0) with q(t1) = q1 .
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UNCERTAINTY PROPAGATION IN NONLINEAR DYNAMIC SYSTEMS 139

Recall our assumption that the right-hand side function f is uniformly Lipschitz continuous
with respect to x which implies that the central path q exists. Our strategy is to decompose
the dynamic system into a linear and a nonlinear part

ẋ(τ) = d(τ) +A(τ) (x(τ)− q(τ) ) +B(τ)w(τ) + fnonlinear( τ, q(τ), x(τ), w(τ) ) .

Here, the functions A, B and d are integrable functions with suitable dimensions while
the function fnonlinear : [t1,∞) × Rnx × Rnx × Rnw → Rnx is simply defined in such a
way that the above dynamic system is for all τ ∈ [t1,∞) equivalent to original dynamic
equation. For the case that the right-hand side function f is differentiable in x and w, we
may define the functions A, B, and d for all τ ∈ [t1,∞) by

A(τ) := ∂f(τ, q(τ), 0)
∂x

, B(τ) := ∂f(τ, q(τ), 0)
∂w

and d(τ) := f(τ, q(τ), 0) .

However, the following consideration also applies, if f is not differentiable, as the
decomposition in linear and nonlinear terms is so far redundant.

We plan to regard the nonlinear terms, collected in the function fnonlinear, as an additional
uncertainty, which can hopefully be bounded under suitable assumptions. This seems to
be a crude plan and we have to be careful to not introduce an unnecessary amount of
conservatism. However, we shall see in the following that the level of conservatism rather
depends on how wisely we choose our estimate of the nonlinear terms. The main idea is
to introduce the following assumption:

Assumption 5.4: We assume that we have an explicit nonlinearity estimate for the
right-hand side function f . I.e., we assume that we have

∀λ ∈ ∆m−n : fnonlinear ( τ, q(τ), x(τ), w(τ) ) ∈ E ( ΩN( τ, q(τ), Q, λ ) ) (5.3.1)

for all x(τ) ∈ E(Q, q(τ)), for all w ∈ W, for all τ ∈ [t1,∞), and for all Q ∈ Snx+ . In this
context, m ≥ n is a given integer and

ΩN : [t1,∞)× Rnx × Snx+ × Rm++ → Snx+

is assumed to be a positive semi-definite function, which is anti-homogeneous in λ.

From a mathematical point of view, the above assumption does not add a main restriction
as we do not even require differentiability of f . However, in practice, it might of course
be hard to find suitable functions ΩN which satisfy the above assumption. Nevertheless,
in the following we will demonstrate that there are many interesting cases in which such a
function ΩN can be constructed.
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140 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

Example 5.10: Let us consider the case that we have a function f for which each
component is convex quadratic in x and linear in w with y(t) = 0, i.e., we regard the case
that we have

fnonlinear,i(τ, q, x, w) = xTCx

for all components i and some positive semi-definite matrix C (which is for simplicity
assumed to be the same for all components). As we can use the inequality xTCx ≤ Tr (QC)
whenever x ∈ E(Q), we can employ the explicit nonlinearity estimate

ΩN( τ, q(τ), Q, λ ) := [ Tr (QC) ]2 diag (λ)−1

in order to satisfy the above assumption with λ ∈ Rnx (compare with Example 5.4). Here,
we have first overestimated the nonlinear function fnonlinear by a box (i.e. component-wise)
and second we used that a box can be written as a sum of ellipsoids. Note that there are
also other nonlinearity estimates possible. For example the choice1

ΩN( τ, q(τ), Q, λ ) :=
[
σmax

(
Q

1
2 C Q

1
2
) ]2

diag (λ)−1

leads to a less conservative nonlinearity estimate requiring the computation of a maximum
eigenvalue.

Example 5.11: Let us consider the case that we have an uncertain dynamic system of
the form

ẋ(τ) = (A(τ) + C(τ)E(τ)D(τ) ) x(τ) + B(τ) v(τ) . (5.3.2)

Here, the functions A, B, C, and D are given matrix valued functions with appropriate
dimensions while the matrix valued function E and the vector valued function v are
regarded as uncertainties. The corresponding convex uncertainty sets for the input
w :=

(
vec(E)T , vT

)T
are assumed to be of the form

W (τ) :=
{
w(τ) | v(τ)T v(τ) ≤ 1 and E(τ)E(τ)T � I

}
.

In order to avoid confusion, we point out that the above system is in our context regarded
as if it were a nonlinear dynamic system, although uncertain systems of this or a very
similar form are typically introduced within the context of linear system theory and the
H∞-norm [82, 244], which is motivated by the fact that the right-hand side function is
linear in the state x. However, from an optimization perspective, the problem of our

1We use the notation σmax(S) to denote the maximum eigenvalue of a symmetric matrix S.
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UNCERTAINTY PROPAGATION IN NONLINEAR DYNAMIC SYSTEMS 141

interest is nonlinear in the sense that the right and side is not jointly linear in the uncertain
input E(t) and the uncertain state x(t). This is unfortunately a nonlinearity in our context,
as we have to regard the functions x, w, and E as the optimization variables of the adverse
player. The corresponding nonlinear term satisfies

fnonlinear(t, q, x, w) = C(t)E(t)D(t)x(t) ∈ E(σmax
(
D(t)QD(t)T

)
C(t)C(t)T )

whenever x(t) ∈ E(Q) as well as E(t)E(t)T � I. Consequently, we can employ a
nonlinearity estimate of the form

ΩN( t, q(t), Q, λ ) :=
σmax

(
D(t)QD(t)T

)
λ

C(t)C(t)T , (5.3.3)

which satisfies all requirements from Assumption 5.4.

Example 5.12: Let us come back to the nonlinear pendulum model from Example 5.9.
As the first component of the right-hand side function is linear, we only need a non-trivial
nonlinearity estimate for the second component

f2(x,w) = − g
L

sin(x1) + 1N cos(x1)w1 + 3N sin(x1)w2
mL

.

We assume now that the pendulum is only operated on a feasible domain of the form
Fx :=

{
(x1, x2)T | |x1| ≤ π

2

}
on which we define the nonlinear term as

fnonlinear,2(x,w) := f2(x,w)− f2(0, 0)− ∂f2(0, 0)
∂x

x− ∂f2(0, 0)
∂w

w .

In this context, we can employ the inequality

fnonlinear,2(x,w) ≤ χ(Q)

withχ(Q) := g

L

[√
Q11 − sin(

√
Q11)

]
+
[
1− cos(

√
Q11) + 3 sin(

√
Q11)

]
N

mL

for all x ∈ E(Q) with
√
Q11 ≤ π

2 and y = 0. Using this definition of the short-hand χ,
we can construct a nonlinearity estimate of the form

ΩN( t, q(t), Q, λ ) := 1
λ

(
0 0
0 χ(Q)2

)

with λ ∈ R++. This nonlinearity estimate satisfies the requirement of Assumption 5.4 as
long as we restrict the condition to hold on the specified domain Fx only.
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142 THE PROPAGATION OF UNCERTAINTY IN DYNAMIC SYSTEMS

Construction of Ellipsoidal Uncertainty Tubes

Let us try to transfer the construction principles for ellispoidal tubes which has been derived
in Section 5.2. For this aim, we regard two functions ν1 : R→ Rn++ and ν2 : R→ Rm−n++ ,
one taking care of the uncertainty w and one taking care of the nonlinear terms, as
well as κ :=

(
νT1 , ν

T
2

)T
. After decomposing the nonlinear right-hand side function

into linear and other terms, which have to be over-estimated, we collect the influence of
the two associated functions Ωτ and ΩN again summarizing them within one function
Ωtotal : R× Rnx × Snx+ × Rm → Snx+ , which we define as

Ωtotal(τ, q,Q, κ) := B(τ)Ωτ (ν1)B(τ)T + ΩN(τ, q,Q, ν2) .

Here, the motivation is to construct a matrix valued differential equation which can be
used to generate robust positive invariant tubes for nonlinear dynamic systems.

Definition 5.3: Using the above notation, we define for any function κ : [t1,∞)→ Rm++
a nonlinear matrix valued differential equation of the form

∀τ ∈ [t1,∞) : Q̇(τ) = Φ(τ, q(τ), Q(τ), κ(τ)) .

In this context, we are using the following short hand for the right-hand side expression

Φ(τ, q,Q, κ) := A(τ)Q+QA(τ)T +
m∑
i=1
κiQ+ Ωtotal(τ, q,Q, κ) ,

which is defined for all τ ∈ [t1,∞), q ∈ Rnx , Q ∈ Snx+ , and κ ∈ Rm++.

Note that the above differential equation for the matrix valued function Q has many
similarities with the Lyapunov differential equation which has been analyzed within
Theorem 5.1. The only difference is that the function Φ is in general a nonlinear function
in Q, while Lyapunov differential equations are by definition linear in their matrix valued
state. However, the fact that the differential equation for Q is nonlinear does not prevent
us from transferring the statement of Theorem 5.1:

Theorem 5.3: Let Assumptions 5.2 and 5.4 be satisfied, let q denote the central path,
and let the function Φ be given by Definition 5.3. Now, if Q : [t1, t2] → Snx+ and
κ : [t1, t2]→ Rm++ are any functions which satisfy for all τ ∈ [t1, t2] a differential equation
of the form

Q̇(τ) = Φ(τ, q(τ), Q(τ), κ(τ)) ,
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UNCERTAINTY PROPAGATION IN NONLINEAR DYNAMIC SYSTEMS 143

then the function X(·) := E(Q(·) , q(·) ) is a robust positive invariant tube on the given
time interval [t1, t2].

Proof: The main idea of the proof of this theorem is already motivated above: first,
we over-estimate the uncertain term B(τ)w(τ) at every time τ by one parameterized
ellipsoid, and second we overestimate the nonlinear terms fnonlinear ( τ, x(τ), w(τ) ) by
another parameterized ellipsoid. We know already from our considerations for linear
dynamic systems how to over-estimate the sum of two ellipsoids with another ellipsoid.
Consequently, we can combine everything by simply adding the influences of two separately
over-estimated terms within one function Ωtotal. Thus, we find that the statement of the
Theorem holds by construction. �

Example 5.13: Let us once more regard the nonlinear pendulum model together with the
nonlinearity estimate from Example (5.12). Using this nonlinearity estimate and choosing
a suitable generating function κ we can apply Theorem 5.3 to generate an ellipsoidal outer
approximation of X(t). This strategy has been applied in order to obtain the ellipsoid
which is shown in the right part of Figure 5.4. Note that the ellipsoid is not optimal as we
can certainly find smaller ellipsoids which also contain X(t). Nevertheless, we have at least
a conservative approximation of the set X(t) which might still be improved by optimizing
the function κ with respect to one or the other criterion, but the main difference to linear
dynamic systems is that the approximation will in general not be tight.
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Chapter 6

Robust Open-Loop Control

There are many ways to formulate robust optimization problems. In the previous chapters,
we have seen that the introduction of robust counterpart formulations turned out to
be useful, while the notation of semi-infinite optimization problem is also helpful in
some cases. When we refer to the field of robust optimization for dynamic systems,
one option is to transfer the formulations which have already been developed for static,
finite dimensional robust optimization problem. For example, we can formulate robust
optimization problems for the discretized version of an uncertain dynamic system, which
leads to a large but structured static robust optimization problem, as it has been outlined
in the introduction within Section 1.2. Taking this way has the advantage that all our
previous formulations and methods for static robust optimization, as e.g. the sequential
convex bilevel programming method, can be transferred as long as the recursive structure
of the discrete dynamic propagation is exploited in the corresponding numerical algorithms.
However, our notation of reachable sets of dynamic systems, as discussed within the
previous chapter, suggests an alternative way to look at robust optimization, which appears
natural and is tailored for uncertain dynamic systems. Here, the aim is to compute the
influence of the uncertainty via its propagation, i.e., by storing robust positive invariant
tubes in the finite dimensional state space, rather than discretizing the whole uncertain
optimal control problem. This strategy is motivated by the fact that the uncertain input
w can vary in time and is thus an infinite dimensional quantity. Similarly, we have in the
optimal control context usually infinitely many constraints, which have to be robustly
satisfied, as we want to formulate bounds on the states of the system or general nonlinear
path constraints.

145
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146 ROBUST OPEN-LOOP CONTROL

The aim of the following section is to develop a formulation which expresses what
we understand when referring to robust optimal control problems and to exploit the
computational framework of uncertainty propagation from the previous chapter.

6.1 Robust Optimization of Open-Loop Controlled Systems

We are interested in the optimization of open-loop controlled uncertain dynamic system.
Here, we only consider the dynamic system on finite time-horizon intervals [0, Te], while
infinite time horizons will later be discussed within Section 6.3. The uncertain dynamic
systems we consider are in general nonlinear and of the form

∀τ ∈ [0, Te] : ẋ(τ) = f(τ, u(τ), p, x(τ), w(τ)) ,

where the notation is analogous to the previous section. The only new variables are the
control input u : [0, Te]→ Rnu as well as the parameter p ∈ Rnp . As it has extensively
been discussed in Section 5.1, we may associate a set valued differential propagation with
the above uncertain dynamic system, which can in our case be written as

∀τ ∈ [0, Te] : X(τ+) = F (τ, u(τ), p,X(τ),W (τ)) .

Note that this notation is based on Assumption 5.1, which specifies our knowledge about
the uncertain input w. A fairly general formulation of a robust optimal control problem
for the above uncertain dynamic system can now be stated as follows:

min
u(·),p,Te,X(·)

M( p, Te, X(Te) )

s.t. X(τ+) = F (τ, u(τ), p,X(τ),W (τ))

X(0) = X0

0 ≥ H(τ, u(τ), p,X(τ),W (τ)) for all τ ∈ [0, Te] .

(6.1.1)

Here, we transfer the language from the field of nominal optimal control, which suggests
to call the objective function M : Rnp × R+ × Π(Rnx) → R a Mayer term, while the
function H : [0, Te]×Rnu ×Rnp ×Π(Rnx)×Π(Rnw)→ RnH comprises a path constraint.

Definition 6.1: We say that a function of the form Z : Π(Rnx) → R is monotonically
increasing, if for any sets X,Y ⊆ Rnx with X ⊆ Y , we have that Z(X) ≤ Z(Y ).
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ROBUST OPTIMIZATION OF OPEN-LOOP CONTROLLED SYSTEMS 147

In order to get familiar with the above way of formulating robust optimal control problems,
we discuss possible choices for the functions M and H within the following examples.
Within these examples, we also point out that most of the practically relevant choices for
the functions M and H are (component-wise) monotonically increasing with respect to
their set valued arguments X(Te) or X(τ), respectively:
Example 6.1: Let us consider the important case that we have already a nominal Mayer
term of the form m : Rnp × R+ × Rnx → R. Our aim is to minimize the worst possible
value for the term m(p, Te, x(Te)), where x(Te) is the state of the differential equation,
which is unfortunately affected by uncertainties. In order to express this robust counterpart
problem in the required form, we define the function M as

M( p, Te, X(Te) ) := sup
x∈X(Te)

m( p, Te, x ) .

Here, we typically assume that m is continuous in x. As X(Te) is in many practical
problems compact, we could also replace the supremum by a maximum. Note that the
above robust counterpart function M is monotonically increasing in the set valued variable
X(Te). Also note that nominal optimal control problems with Lagrange objective terms
can for all theoretical purposes be reformulated into optimal control problems with Mayer
terms by augmenting the differential equation with an auxiliary state. Thus, the above
strategy can be applied to formulate robust counterparts for optimal control problems
with given Lagrange terms, too.

Example 6.2: It is important to realize that robust optimal control problems do not have
to originate from a robust counterpart formulation. For example the choice

M( p, Te, X(Te) ) := diag(X(Te)) := sup
x,y∈X(Te)

‖x− y‖ .

would lead to a minimization of the maximum distance of two points in the set X(Te), if
‖ · ‖ : Rnx → R+ denotes a suitable norm. Such a formulation can for example be useful,
if we plan to design and optimize the robustness properties of a dynamic system directly.
Another choice could be of the form

M( p, Te, X(Te) ) :=
∫
X(Te)

∥∥∥x− ∫X(Te) x dx
∥∥∥2

dx∫
X(Te) 1 dx

planning to minimize the inertia of X(Te), i.e., the quadratic deviation to the center of
gravity. Similarly, we can employ a function of the form

M( p, Te, X(Te) ) :=
∫
X(Te)

1 dx
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148 ROBUST OPEN-LOOP CONTROL

to formulate minimum volume problems. While Example 6.1 was based on a given Mayer
term, which is assumed to have a physical interpretation within the world of nominal
optimal control, the above choices have no such analogon. Rather, the three regarded
choices for the function M have in common that they are always positive and that they
can only be equal to zero, if the set X(Te) consists of one single point only, i.e., if the
state at the time Te is not affected by the uncertainties. In addition, we observe that all
discussed choices for the function M are monotonically increasing with respect to the
argument X(Te).

Example 6.3: Let us once more come back to the case that we have a given nominal
Mayer term of the form m : Rnp×R+×Rnx → R. As an alternative to robust counterpart
formulations, we might be interested in an outer average formulation, which corresponds
to choice

M( p, Te, X(Te) ) :=
∫
X(Te) m(p, Te, x) dx∫

X(Te) dx .

Similarly, we may regard inner average formulations of the form

M( p, Te, X(Te) ) := m

(
p, Te,

∫
X(Te)

x dx
)
.

However, we should be aware of the fact that inner and outer average formulations are
typically not monotonically increasing in X(Te).

Example 6.4: Note that the previous examples about the construction of meaningful
objective functions M transfer similarly also for the construction of a constraint function H.
For example, if we have a nominal constraint of the form

∀τ ∈ [0, Te] : h( τ, u(τ), p, x(τ), w(τ) ) ≤ 0 ,

which should be satisfied for all realizations of the uncertainty, we can define an associated
robust counterpart function H component-wise (with i ∈ {1, . . . , nH} ) as

Hi(τ, u(τ), p,X(τ),W (τ)) := sup
x ∈ X(τ)
w ∈W (τ)

hi( τ, u(τ), p, x, w ) .

In this case, the function H is component-wise monotonically increasing in the argument
X(τ). The above robust counterpart construction of the path constraint function H is
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ROBUST OPTIMIZATION OF OPEN-LOOP CONTROLLED SYSTEMS 149

the main application which we have in mind. However, in principle we may also allow any
other construction which helps us to formulate “design criteria” for the uncertainty tube
X(·). For example, we can require an upper bound on the volume or diameter of the sets
X(τ) for all τ ∈ [0, Te].

Note that we are in many cases able to re-formulate our robust optimal control problem
in such a way that it can be covered by formulation (6.1.1). In some other cases, we
have to extend slightly this formulation, which is usually not difficult as most of the
formulation strategies, which are well-known from the field of nominal optimal control,
formally transfer by replacing the nominal state “x” with the set valued function “X”.
However, in order to discuss such techniques briefly, we collect some selected aspects in
the following list without working out all details:

• Uncertain Time-Invariant Parameters: Formulation (6.1.1) covers the case that
we have time-invariant parameters, whose actual value is unknown. This type of
uncertainties should not be mixed up with the time-varying inputs w, as we do not
exploit our information about the uncertainties in an efficient manner, otherwise. In
order to briefly explain how to deal with this case, we start with a dynamic system
of the form

∀τ ∈ [0, Te] : ẏ(t) = f̂(τ, u(τ), p, y(τ), p̂, w(τ)) with x(0) = x0 ,

where the notation and assumptions are all as before, but there is an additional
unknown time-invariant parameter p̂ ∈ Wp̂ ⊆ Rnp̂ . This dynamic system can be
reformulated by introducing an augmented state x : [0, Te]→ Rnx with dimension
nx := ny + np̂ , which is defined as x(t) :=

(
y(t)T , p̂T

)T
and which satisfies a

differential equation of the form

ẋ(t) =
(
f̂(τ, u(τ), p, y(τ), p̂, w(τ))
0

)
with y(0) =

(
y0
p̂

)
.

Here, we assume that the uncertain initial state y(0) is known to be in a given set
Y0 ⊆ Rny . The new uncertainty set X0 for the initial value x(0) takes the form
X0 := Y0 ⊕Wp̂. Using this re-formulation trick, formulation (6.1.1) can deal with
uncertain time-varying inputs, uncertain time constant inputs, and uncertain initial
values.
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150 ROBUST OPEN-LOOP CONTROL

• Uncertain Process Durations: Note that robust time-optimal control problems are
included in formulation (6.1.1) as the end time Te can be an optimization variable
as well. However, we can in principle even regard the case that the duration Te
of the dynamic process is unknown. In this case, the differential equation can be
re-scaled with an unknown parameter, such that the previous comment applies.

• Boundary Constraints: The robust optimal control formulation could be extended
by replacing the constraint X(0) = X0 with more general constraints on the sets
X(0) and X(Te). Trying to transfer the typical formulation strategies for nominal
optimal control problems, the first type of constraint that comes to our mind are
boundary constraints, where we require the initial value constraint X(0) = X0
to be jointly satisfied with an end-value constraint X(Te) = XF. Here, the sets
X0, XF ⊆ Rnx are given. However, such a constraint is in most practical situations
ambiguous, as we have usually limited degrees of freedom. In contrast, a highly
relevant form of boundary constraints are the periodic boundary constraints, where
we replace the initial value constraint X(0) = X0, with a condition of the form
X(0) = X(Te). As this case is very important, we will discuss it later in full detail
within Section 6.3.

• Generalized Lagrange Terms: Within Example 6.1 we have already remarked that
robust counterpart problems for given nominal Lagrange terms (or Bolza-objectives)
can be covered by formulation (6.1.1) as Bolza-objectives can always be re-written
into standard Mayer terms. However, there is a practically relevant generalization
of formulation (6.1.1) possible, if we also allow generalized Langrage terms, which
may explicitly depend on the uncertainty sets, and which are of the form∫ T

0
L(τ, u(τ), p, Te, X(τ),W (τ)) dτ . (6.1.2)

Here, L : R×Rnu ×Rnp ×R+ ×Π(Rnx)×Π(Rnw) is an appropriate scalar valued
function. This type of objective terms is for example needed, if we are interested in
minimizing the average volume of the sets X(·) on the interval [0, Te].

Note that – together with the above remarks and minor generalizations – formulation (6.1.1)
can be considered as fairly general and it covers a large class of practically relevant robust
open-loop optimal control problems. However, the disadvantage of this problem formulation
is that at the current status there are no efficient algorithms known which solve this class
of problems in its general form, with a high numerical accuracy, and in an acceptable
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run-time for moderate and large state dimensions. Here, the main challenge is that our
optimization variable X is a set valued function.

Nevertheless, we shall see in the following that it is possible to develop suitable
approximation strategies, which search for sub-optimal solutions to problem (6.1.1) while
guaranteeing robust feasibility. For this aim, we plan to apply the construction strategies
for robust positive invariant tubes, which have been discussed in the previous Section 5.2.

Assumption 6.1: We assume that we have functions ϕ, Φ, q0, and Q0 with appropriate
dimensions such that the following property is satisfied: for any given control function
u : [0, Te] → Rnu , any parameter p ∈ Rnp , any function κ : [0, Te] → Rm++, and any
vector κ0 ∈ Rn0

++, which admit solutions q : [0, Te]→ Rnx and Q : [0, Te]→ Snx+ of the
coupled differential equation

∀τ ∈ [0, Te] :


q̇(τ) = ϕ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) q(0) = q0(κ0)

Q̇(τ) = Φ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) Q(0) = Q0(κ0) ,

the set valued function X(·) := E(Q(·), q(·)) is a robust positive invariant tube on the
interval [0, Te] for which the condition X0 ⊆ X(0) is also satisfied.

At this point, we recall our consideration from the previous sections, where we have
discussed how we can construct functions ϕ,Φ, q0, and Q0 for linear and nonlinear
dynamic systems which ensure that the above assumption can be met. In order to discuss
cases in which Assumption 6.1 can be used to find sub-optimal approximate solutions of
the original robust optimal control problem, we regard an optimal control problem of the
following form:

inf
ξ(·),ζ(·),π,Te

M( p, Te, E(Q(Te), q(Te)) )

s.t.


q̇(τ) = ϕ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) q(0) = q0(κ0)

Q̇(τ) = Φ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) Q(0) = Q0(κ0) ,

0 ≥ H(τ, u(τ), E(Q(τ), q(τ)), W (τ)) for all τ ∈ [0, Te] .

(6.1.3)

In this optimal control problem, we have collected the differential states in the function
ξ := (q,Q), the controls in the function ζ := (u, κ), and the parameters in the vector
π := (p, κ0). Let us summarize the properties of this optimal control problem within the
following Theorem.
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152 ROBUST OPEN-LOOP CONTROL

Theorem 6.1: Let Assumption 6.1 be satisfied. If the function H is component-wise
monotonically increasing in X(τ), then every feasible input (u(·), p) of the auxiliary
optimal control problem (6.1.3) corresponds to a feasible input of the original robust
optimal control problem (6.1.1). Moreover, if in addition the objective function M is
monotonically increasing in X(Te), then the objective value of problem (6.1.3) is an upper
bound on the objective value of the original problem (6.1.1). In other words, any solution
of problem (6.1.3) yields a feasible but possibly sub-optimal solution of the original robust
optimal control problem.

The main advantage of the optimal control problem (6.1.3) is that we do not need any set
valued functions anymore. However, in order to reduce this problem to a standard optimal
control problem, we still have to mention how the functions M and H can be evaluated
in practice. The aim of the following examples is to outline how problem (6.1.3) can in
most of the practically relevant situations be re-written as a standard nonlinear optimal
control problem such that existing numerical algorithms and software can be applied:

Example 6.5: Let us assume that the function M is a robust counterpart objective for
an existing nominal Mayer term m, as discussed within Example 6.1. If m is linear in x,
i.e., if m has the form

m(p, Te, x) := c(p, Te)Tx+ d(p, Te) ,

then the evaluation of the associated robust counterpart function can explicitly be evaluated
by employing the support function of an ellipsoidal set:

M( p, Te, E(Q(Te), q(Te)) ) = sup
x∈E(Q(Te),q(Te))

m( p, Te, x )

=
√
c(p, Te)TQ(Te)c(p, Te) + c(p, Te)T q(Te) + d(p, Te) .

The latter expression can simply be used as a nonlinear objective term. As most of the
nonlinear optimal control solvers ask for differentiability of the objective, we have to
regularize the square-root term if necessary or reformulate it as an second order cone
constraint provided that our optimal control solver can deal explicitly with such problems.
Similarly, we can deal with the case that m is a (not necessarily concave) quadratic form
in x. In this case, we can employ the S-procedure the re-formulate the maximization
problem into an equivalent minimization problem adding the required dual variables as
slack-variables (parameters) to the optimal control problem. Recall that such formulation
techniques have been discussed within Chapter 3 such that we do not mention all details
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in this example. Finally, if m is a more general function for which an upper bound on the
Hessian matrix with respect to x is available, we can still employ the Lagrangian dual
relaxation techniques from Chapter 3 as long as we can accept to possibly inherit a higher
level of conservatism. An analogous remark applies for the component-wise reformulation
of robust counterpart constraint functions H.

Example 6.6: Let us come back to the possible choices for the Mayer term, which have
been discussed within Example 6.2. For the case that we want to minimize the maximum
distance of two points in the set X(Te), which is replaced in formulation (6.1.3) by an
ellipsoid of the form E(Q(Te), q(Te)), we obtain the following expression for the objective

M( p, Te, E(Q(Te), q(Te)) ) = diag(E(Q(Te), q(Te))) := 2σmax (Q(Te) ) .

Thus, this formulation requires the computation of a maximum eigenvalue to evaluate the
objective. As this is a non-smooth objective, the maximum eigenvalue can alternatively
be replaced by a semi-definite inequality by introducing a slack variable.

Similarly, the inertia minimization formulation leads to an term of the form

M( p, Te, E(Q(Te), q(Te)) ) :=
∫
E(Q(Te),q(Te))

∥∥∥x− ∫E(Q(Te),q(Te)) x dx
∥∥∥2

dx∫
E(Q(Te),q(Te)) 1 dx

= Tr (Q(Te) )
nx + 2 ,

while a minimum volume formulation leads to a term of the form

M( p, Te, E(Q(Te), q(Te)) ) :=
∫
E(Q(Te),q(Te))

1 dx = π
nx
2 Det(Q(Te) )
Γ
(nx

2 + 1
) .

All of these objective terms can typically be treated with standard nonlinear optimal control
solvers, i.e., the objective term is in all cases reduced to a standard formulation.

6.2 Interlude: Robust Optimal Control of a Tubular Reactor

In this section, we apply the robust optimal control technique from the previous section
to an example which originates from the field of chemical engineering. Here, the studied
setting involves a tubular chemical reactor operating under steady-state conditions. Inside
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154 ROBUST OPEN-LOOP CONTROL

the reactor an irreversible and exothermic reaction takes place, while a surrounding jacket
enables the heat removal. The reactor model adopted is based on the 1D plug flow model
from [161]. The main modeling assumptions are:

1. steady-state condition,

2. no axial dispersion,

3. perfect radial mixing,

4. a constant density and heat capacity of the fluid,

5. a negligible heat resistance between the reactor and its jacket, and

6. an Arrhenius law dependence of the reaction rate on the temperature.

Using the spatial coordinate z along the reactor as the independent variable yields a highly
nonlinear ODE system for z ∈ [0, L]:

∂

∂z
x1(z) = α

v
(1− x1(z)) exp

(
γx2(z)

1 + x2(z)

)
,

∂

∂z
x2(z) = αδ

v
(1− x1(z)) exp

(
γx2(z)

1 + x2(z)

)
+ β(z)

v
(u(z)− x2(z)) .

Here, the states x1, and x2 are scaled versions of the concentration C and reactor
temperature T respectively. More precisely, we have

C(z) := CF(1− x1(z)) and T (z) := TF(1 + x2(z))− 273.15◦C ,

where CF and TF are the given reactant concentration and temperature of the feed stream.
The parameters α, v, δ, and γ are given constants.

The input u(z) = TJ(z)−TF
TF

contains the dimensionless version of the jacket temperature
TJ(z) which can be controlled along the reactor. Here, the main difficulty is, that the heat
transfer coefficient β is often hard to measure/estimate and may in particular vary along
the reactor, e.g., due to local fouling at the reactor wall. In our study we assume that β
is known to vary at most Γ := 6% around its nominal value, i.e., we use an uncertainty
model of the form

β(z) := βnominal(1 + Γw(z)) ,
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Figure 6.1: The concentration C and temperature T in dependence on the spatial
coordinate z ∈ [0, L] (with L = 1.2 m) at the nominally optimal solution (solid line). The
temperature constraint Tmax = 110◦C is active over large parts of the reactor. The
dashed line shows a simulation with 6% uncertainty in the heat transfer coefficient leading
to a violation of the maximum temperature constraint.

with w(z) ∈ W (z) denoting the scaled version of the time-varying uncertainty, i.e., we
assume W (z) := [−1, 1].

Maximizing the conversion in the reactor amounts to minimizing an objective of the form

Φ := CF(1− x1(L)) . (6.2.1)

Now, we first minimize Φ nominally, i.e., for β(z) = βnominal without taking the
uncertainty into account, subject to initial value conditions of the form x(0) = 0, a
maximum temperature constraint T (z) ≤ Tmax, as well as upper and lower control
bounds on the jacket temperature denoted as TJ,min ≤ T (z) ≤ TJ,max which should be
satisfied for all z ∈ [0, L]. All concrete numerical values for these constants are taken
from [161]. Only the reactor length L and the upper reactor temperature bound Tmax have
been set to 1.2 m and 110◦C, respectively. The corresponding nominally optimal result for
the concentration C and temperature T are shown as the solid lines in Figure 6.1.

Note that the maximum temperature constraint is active along a large part of the
reactor tube. Now, we simulate the conversion and temperature once more by applying
the nominally optimal control input but choosing some disturbance w, which satisfies
w(z) ∈ W (z) for all z ∈ [0, L]. The corresponding result is also shown in Figure 6.1 in
form of the dashed lines. We can clearly see an overshoot in the reactor temperature, i.e.,
our constraint is violated. This is due to the fact that the uncertain heat transfer coefficient
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156 ROBUST OPEN-LOOP CONTROL

directly affects the differential equation for the reactor temperature. Moreover, higher
temperatures stimulate the reaction causing additional heat to be produced. Consequently,
a nominal optimization of the reactor does not lead to an acceptable solution and can
even lead to hazardous situations.

In the next step, we plan to take the uncertainty into account with the aim to solve a
conservative robust counterpart problem of the form (6.1.3). Here, the main difficulty is
to derive the nonlinearity estimate for the functions

f1(x, u, w) := α

v
(1− x1) exp

(
γx2

1 + x2

)

f2(x, u, w) := αδ

v
(1− x1) exp

(
γx2

1 + x2

)
+ βnominal(1 + Γw)

v
(u− x2 )

The main strategy is to use the general inequality exp( y ) ≤ 1 + y + y2

2 exp ( |y| )
which holds globally for all y ∈ Rnx . Using this inequality it can be shown that we can
find nonlinearity estimates ΩN as follows

j(q,Q) := γ

(1 + q2)(1 + q2 −
√
Q22)

r1(q,Q) := j(q,Q) +
√
Q22
2 j(q,Q)2 exp(

√
Q22 |j(q,Q)| )

r2(q,Q) := j(q,Q)
1 + q2

+ j(q,Q)2

2 exp(
√
Q22 |j(q,Q)| )

l1(q, u,Q) := α

v
exp

(
γq2

1 + q2

) [
r1(q,Q)

√
Q11Q22 + r2(q,Q)Q22

]
l2(q, u,Q) := δ l1(q, u,Q) + Γβnominal

√
Q22

v

ΩN( τ, q, Q, u, λ ) :=

 l1(q,u,Q)2

λ1
0

0 l2(q,u,Q)2

λ2

 .

Note that the nonlinearity estimate depends on the matrix Q ∈ S2
+ and the linearization

point (central path) q ∈ R2. Moreover, the first component f1 of the right-hand side
function does not explicitly depend on w. Consequently, the over-estimation term l1
satisfies l1(y, u,Q) = O( ‖Q‖ ) for small Q as the derivative of f1 with respect to the
states is locally Lipschitz continuous.

Remark 6.1: The above nonlinearity estimate in our example can be simply derived
with “paper and pencil”. Also from an implementation point of view it is no problem to
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Figure 6.2: The robustly optimized concentration C and temperature T as a function
of the spatial coordinate z ∈ [0, L] (with L = 1.2 m) at the nominally optimal solution
(solid line). The dotted lines show projections of the ellipsoid tube defining the region in
which the states are guaranteed to be. Note that the maximum temperature constraint
is guaranteed to be satisfied for all possible realizations of the uncertain heat transfer
function assuming that the variation in β is less than 6%.

implement the function ΩN as this requires basically to type five lines of code referring
to the five equations in (6.2.2). However, there are many practical situations in which
we end up with more lengthly right-hand side expressions. In this case, it might become
inconvenient to derive nonlinearity estimates by hand. In principle, it is possible to
automate the computation of nonlinearity estimates once some basic composition or chain
rules are defined. Such an implementation could be analogous to existing symbolic tools
like automatic differentiation or convexity detection [131, 106]. Here, even terms like
exponentials, sines or cosines are not a problem on principle as we have seen in the above
pendulum or chemical reactor examples. Working out this concept could be based on
the ideas which have been developed in the field of interval arithmetics [27, 181]. A
consequent application of these interval techniques is beyond the scope of this thesis but
might be an interesting direction for future research.

Once we have derived the above nonlinearity estimate, we can directly implement and
solve the conservative robust counterpart problem of the form (6.1.3). The corresponding
result is shown within Figure 6.2. As it can be seen, the robustified reactor temperature
profile does not rise as sharply as before and it exhibits a back-off with respect to the
upper reactor temperature bound. The ellipsoidal tube is rather narrow at the beginning,
while it broadens when it is close to the upper limit. The explanation is that the uncertain
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Figure 6.3: Left: The nominally optimized jacket temperature TJ(z) (control input) in
dependence on the spatial coordinate z ∈ [0, L] (with L = 1.2 m). The upper bound
of the form TJ(z) ≤ 127◦C is active for small z. Right: The corresponding robustly
optimized jacket temperature for which the control bounds are not active.

heat transfer coefficient enters the dynamic equation for the temperature via the term
β(z) [TJ(z)− T (z) ] where TJ is the controlled jacket temperature and T the temperature
inside the reactor. Thus, if we adjust the control input TJ(z) such that it coincides with
the temperature T (z) inside the reactor, the uncertainty cannot affect on the reaction
itself, as TJ(z)− T (z) = 0 in this case. Thus, especially at the beginning of the tube,
i.e., for small z, when there is still a high reactant concentration present, a robust optimizer
chooses TJ(z) ≈ T (z) such that despite the large amount of reactant, the uncertainty
hardly has an influence. However, as soon as T (z) comes close to the upper limit, we
cannot continue with this strategy as there is the danger of over-heating otherwise. The
broadening ellipsoidal tube touches as expected the upper temperature limit, ensuring
that the reactor temperature will not exceed this value (given the specified maximum
uncertainty of 6% on the heat transfer coefficient β), while still trying to be as optimal
as possible. As robustness typically induces conservatism in the optimal solution, the
performance decreases also here, which is reflected by higher outlet concentrations of the
reactant and, thus, lower conversions. The current loss in performance is easily explained
as lower temperatures typically slow down irreversible reactions and, hence, yield lower
conversions.

In the right part of Figure 6.3 the robustly optimized jacked temperature TJ(z) (control
input) is shown. In comparison to the nominally optimized control input (left part of
Figure 6.3), we can observe a less extreme heating strategy, which is close to the reactor
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INTERLUDE: ROBUST OPTIMAL CONTROL OF A TUBULAR REACTOR 159

Figure 6.4: A simulation of the concentration C and temperature T (dotted lines) for
6% uncertainty in β applying the robustly optimized control input. It is guaranteed by
Theorem 5.3, that the simulation result must be between the two dashed lines representing
the outer ellipsoidal tube. However, the simulated concentration and temperature are in
some parts of the reactor quite closed to their theoretical upper limits, i.e., the nonlinearity
estimate was sufficiently accurate and did not introduce too much conservatism.

temperature as explained above. Note that in the nominally optimized case, the upper
bound on the maximum jacket temperature is active while in the robustly optimized case
the temperature is kept in a moderate range and is not driven to its bounds.

Finally, it remains to be discussed whether the computed robust solution is reasonable
or much too conservative. Note that this is a relevant as we have used a non-trivial
nonlinearity estimate, i.e., we can only qualitatively assess the level of conservatism:
Figure 6.4 shows a simulation (dotted lines) of the nonlinear system applying the robustly
optimized control input as well as a uncertain heat transfer coefficient whose values differ
at most 6% from the nominal heat transfer coefficient βnominal. As guaranteed by our
theoretical result, the simulated states must be in the ellipsoidal outer tube shown as the
dashed lines in Figure 6.4. However, we can also observe that the simulation drives the
states quite close to their theoretical limits. The simulated temperature takes a maximum
at z∗ ≈ 0.6 m. At this point, we have Tsimulate(z∗) ≈ 109.65◦C, which is obviously
quite close to the upper limit Tmax = 110◦C. In this sense we may state that our
nonlinearity estimate was sufficiently accurate and did not introduce an unreasonable
amount of conservatism.

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



160 ROBUST OPEN-LOOP CONTROL

6.3 Robust Optimization of Periodic Systems

Let us start our analysis of periodic orbits by regarding an uncertain dynamic system of
the form

∀τ ∈ R : ẋ(τ) = f(τ, x(τ), w(τ)) . (6.3.1)

for a right-hand side function f : R×Rnx ×Rnw → Rnx which is assumed to be periodic
in its first argument such that we have

∀τ ∈ R, ∀x ∈ Rnx , ∀w ∈ Rnw : f(τ + Te, x, w) = f(τ, x, w)

for some time Te ∈ R++. Here, we assume - as in the previous section - that f is uniformly
Lipschitz continuous in x, while the uncertainty sets W (τ) ⊆ Rnx are compact and given.
Moreover, we assume that we have W (τ + Te) = W (τ) for all τ ∈ R, i.e., the uncertainty
sets are periodic, too. Note that the corresponding set valued differential equation can be
written as

∀τ ∈ R+ : X(τ+) = F (τ,X(τ),W (τ)) with X(0) = X0 , (6.3.2)

where we assume that the initial uncertainty set X0 at time 0 is given. In the following, we
first review some standard definitions concerning the stability of periodic systems. However,
this review must be interpreted as a preparation step for the discussion of periodic orbits
of uncertain nonlinear dynamic systems which will follow in later sections. Note that we
are in most of the practical applications rather interested in robustness than in stability.
However, the stability of a dynamic system is in many practical situations a necessary
requirement which enables us to make statements about robustness guarantees. The other
way round, if we consider an unstable dynamic system there is in most of the practical
situations not much hope that we can make any useful statements about robustness on
an infinite time-horizon. This motivates to discuss stability aspects first.

Stability of Periodic Systems

In the following, we introduce some well-established standard definitions [36] which are
needed for analyzing the stability of periodic orbits of uncertain differential equations. For
this aim, we directly employ our notation of set-valued differential equations:
Definition 6.2 (Robust Stability of Periodic Orbits): Let x : R→ Rnx be a periodic
function with x(τ) = x(τ + Te), which satisfies the differential equation (6.3.1) for all
functions w with w(τ) ∈W (τ) and for all τ ∈ R.
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ROBUST OPTIMIZATION OF PERIODIC SYSTEMS 161

1. We say that the periodic orbit x is locally robustly stable, if there exists for every
ε > 0 a δ > 0 such that we have for all t ∈ R+ and for all sets X0 ⊆ Rnx an
implication of the form

sup
ξ∈X0

‖ξ − x(0)‖ ≤ δ =⇒ sup
ξ∈X(t)

‖ξ − x(t)‖ ≤ ε .

Here, we assume that the function X satisfies equation (6.3.2).

2. We say that the periodic orbit x is uniformly locally, asymptotically, and robustly
stable, if it is locally robustly stable and if there exists an open set X0 with x(0) ∈ X0
such that the corresponding solution X of the propagation equation (6.3.2) satisfies

lim sup
t→∞

sup
ξ∈X(t)

‖ξ − x(t)‖ → 0 .

Note that there are many other stability definitions possible, as we could extend the
above list with the notation of global stability, exponential stability etc., which are for
example discussed by Blanchini and Miani [36], who also point out that the number of
stability definitions increases with the number of possible permutations of the requirements
(uniform, local v.s. global, asymptotic, robust, etc.). For the case that we have no
uncertainties, i.e., W (τ) = {0} for all τ ∈ R, the above definition of local robust stability
coincides with the notation of local stability for the nominal system and an analogous
remark applies for the definition of local asymptotic stability.

One of the most famous tools to analyze stability properties of dynamic systems are
Lyapunov functions, which can in our context be defined as follows:

Definition 6.3 (Lyapunov Functions): Let x be a periodic orbit as in Definition 6.2.
A locally Lipschitz continuous positive definite function Ψ : R × Rnx → R+, which is
periodic in its first argument, is said to be a (local) Lyapunov function, if there exists
an open robust positive invariant tube N : R→ Π(Rnx) with x(t) ∈ N(t) such that the
inequality

∀y ∈ N(t), ∀w ∈W (t) : lim sup
h→0+

Ψ(t, y + hf(t, y, w))−Ψ(t, y)
h

≤ −α (‖y − x(t)‖)

holds for all t ∈ R. Here, α : R → R+ can be any continuous and strictly increasing
function with α(0) = 0.
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162 ROBUST OPEN-LOOP CONTROL

It is a well-known fact [153] that a periodic orbit x is locally robustly stable inside the
robust positive invariant tube N , if it admits a Lyapunov function Ψ. Note that the
concept of Lyapunov functions and the concept of robust positive invariant tubes are
strongly connected with each other [36]. For example, if we have a given Lyapunov
function Ψ, we can construct non-trivial robust positive invariant tubes Xε : R→ Π(Rnx)
by defining

Xε(t) := {x |Ψ(t, x) ≤ ε }

for all sufficiently small ε > 0. Note that as long as the functions Ψ and W are periodic
with respect to their time argument t, the functions Xε, which are obtained by the above
definition, are periodic, too. This observation implies the following statement:

Proposition 6.1: The existence of a periodic Lyapunov function for a periodic orbit of
an uncertain dynamic system implies the existence of periodic robust positive invariant
tubes with non-empty interior.

In the following, we plan to employ the result of Theorem 5.3 in order to construct
conservative robust positive invariant tubes for periodic dynamic systems. Here, the aim is
to derive sufficient stability conditions for dynamic systems under uncertainty. In order to
make the corresponding techniques applicable for our current context of periodic systems
we introduce the following Assumption:

Assumption 6.2: Let x be a periodic orbit of the uncertain periodic differential
equation (6.3.1) as introduced within Definition 6.2. We assume that we have an
explicit nonlinearity estimate ΩN : [0, Te]× Rnx × Snx+ × Rm++ → Snx+ which satisfies the
requirements from Assumption 5.4, if the periodic orbit x is employed as the central path.
Moreover, we assume that the following properties are satisfied:

1. The function ΩN is periodic in its first argument with period time Te, i.e we have a
relation of the form ΩN(t+ Te, ·, ·, ·) ≡ ΩN(t, ·, ·, ·) for all t ∈ R.

2. The function ΩN satisfies for all τ ∈ [0, Te], all Q1, Q2 ∈ Snx+ with Q1 � Q2, and
all κ ∈ Rm++ a semi-definite inequality of the form

∀α ∈ [0, 1] : ΩN(τ, x(τ), αQ1, κ) � αΩN(τ, x(τ), Q2, κ) .

The periodicity requirement in the above assumption is in most practical cases
“automatically” satisfied, since the right-hand side function is periodic, too. Similarly, the
second requirement in Assumption 6.2 does not add a major restriction, if we recall that
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the function ΩN is designed to over-estimate the nonlinear terms in the right-hand side
equation such that ΩN can typically be expected to grow at least linearly in Q. As we
assume that x is a periodic orbit, we may additionally assume that we have

∀τ ∈ [0, Te] : B(τ) = ∂

∂w
f(τ, x(τ), 0) = 0

such that we have Ωtotal = ΩN and the matrix-valued right-hand side function Φ, which
has originally been introduced within Definition 5.3, becomes in our case

Φ(τ, x,Q, κ) = A(τ)Q+QA(τ)T +
m∑
i=1
κiQ+ ΩN(τ, x,Q, κ) . (6.3.3)

Using this construction, we consider the following Theorem:

Theorem 6.2: Let us assume that we have a nonlinearity estimate ΩN for a periodic
orbit x which satisfies Assumption 6.2 while the function Φ is given by equation (6.3.3)
assuming B(τ) = 0. Now, if there exists a function κ : [0, Te]→ Rm++, a scalar α ∈ [0, 1],
and a symmetric positive definite function Q : [0, Te]→ Snx++ which satisfy the following
differential equation together with the corresponding semi-definite boundary inequality

∀τ ∈ [0, Te] : Q̇(τ) = Φ(τ, x(τ), Q(τ), κ(τ)) and αQ(0) � Q(Te) , (6.3.4)

then x is a locally robustly stable periodic orbit with region of attraction E(Q(0), x(0)).
Moreover, if we can satisfy the above condition with α < 1, then x is also asymptotically
robustly stable within the mentioned region of attraction.

Proof: Let us first choose a function κ which satisfies the condition (6.3.4) on the time
interval [0, Te]. This function can be continued periodically by defining κ(nTe + t) := κ(t)
for all t ∈ [0, Te] and all n ∈ N. Now, we regard the solution of the periodic differential
equation

∀τ ∈ [0,∞) : Q̇(τ) = Φ(τ, x(τ), Q(τ), κ(τ)) .

Due to the two additional requirements on the function ΩN , which have been introduced
within Assumption 6.2, the solution Q of the above periodic differential equation must
satisfy a semi-definite inequality of the form

∀t ∈ [0, Te] : Q(nTe + t) � αnQ(t) ,
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164 ROBUST OPEN-LOOP CONTROL

which holds for all n ∈ N. Now, we may use the result of Theorem 5.3 in order to show
that we have for all n ∈ N and all t ∈ [0, Te] an inclusion of the form

T (nTe + t)[ E(Q(0), x(0) ) ] ⊆ E(αnQ(t), x(t) ) ⊆ E( γ αnQ(0), x(t) ) .

Here, γ < ∞ is a uniform overshoot constant, which must exist as the function Q(·) is
strictly positive and continuous on the compact interval [0, Te]. The statement of the
Theorem is a direct consequence. �

Example 6.7: Let us regard an uncertain dynamic system of the form

∀τ ∈ R : ẋ(τ) = (A(τ) + C(τ)E(τ)D(τ) ) x(τ) , (6.3.5)

where the uncertainty w(τ) := vec (E(τ) ) is assumed to satisfy E(τ)E(τ)T � I while
A, B, and C are periodic matrix valued functions with appropriate dimensions and period-
time Te. Here, the function x(t) = 0 is trivially a periodic orbit, but the important
question is under which conditions we can guarantee that this orbit is robustly stable.
Recall the nonlinearity estimate of the form

ΩN( t, q(t), Q, λ ) :=
σmax

(
D(t)QD(t)T

)
λ

C(t)C(t)T ,

which has been derived within Example 5.11. This nonlinearity estimate satisfies obviously
the requirements from Assumption (6.2). Thus, we can apply Theorem 6.2 finding that
the uncertain dynamic system (6.3.5) is (globally) robustly stable if there exists a function
κ : [0, Te]→ Rnx++ such that the differential equation

Q̇(τ) = A(τ)Q(τ) +Q(τ)A(τ)T + κ(τ)Q(τ) +
σmax

(
D(τ)Q(τ)D(τ)T

)
κ(τ) C(τ)C(τ)T

αQ(0) � Q(Te)

admits a positive definite solution Q : [0, Te] → Snx++ for some α ∈ [0, 1]. The latter
sufficient condition for robust stability can be checked with standard optimal control solvers
- although the formulation is in this form non-convex. Here, it should be highlighted that
a condition of the above form can not so easily be obtained with the usual H∞-framework
which is well-established for linear time-invariant systems [51, 59, 82, 172, 244] and which
has also been analyzed for computing the distance to instability [52, 53]. Note that even if
the matrix valued functions A, C, and D are time-invariant, the above condition provides
robust stability guarantees for time-varying uncertainties E.
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Set Valued Periodic Systems

So far, we have concentrated on the case that there exists a single periodic orbit x of the
uncertain differential equation for which we have derived sufficient stability conditions
within Theorem 6.2. This result has some applications as illustrated in the example above.
However, in most of the practical applications, we will typically not be able to find a
single orbit x which satisfies the differential equation for all possible uncertainties. In
this case, we are interested in the question whether we can find a possibly small periodic
tube in which the state of the uncertain dynamic systems remains forever. In other words,
we are interested in conditions which guarantee the existence of a set valued function
X : [0, Te]→ Π(Rnx) which satisfies

∀τ ∈ [0, Te] : X(τ+) = F (τ,X(τ),W (τ)) as well as X(0) = X(Te) . (6.3.6)

At this point, we have to rely on a quite non-trivial technical result, namely Schauder’s
fixed point theorem, which is well-known in the literature [45]. As this result will be
the basis of the following consideration, we briefly summarize it in form of the following
Lemma:

Lemma 6.1: If we can find a convex and bounded set Y ⊆ Rnx such that we have an
inclusion of the form

cl (T (Te, 0)[Y ] ) ⊆ Y ,

then there exists a periodic and robust positive invariant tube X which satisfies the
condition (6.3.6) as well as X(0) ⊆ Y .

Proof: As the set propagation operator T (Te, 0) is continuous on Π(Y ), the above
statement is equivalent to the standard version of Schauder’s fixed point theorem [45].�

The above way of guaranteeing the existence of periodic and robust positive invariant
tubes is different than the strategy from Proposition 6.1, since Lemma 6.1 does not require
the uncertain dynamic system to be stable in any sense. In fact, we might even argue that
we are simply not interested in stability when uncertainties are present - as long as we
can guarantee that the system remains within a small periodic tube. However, in many
practical examples we observe that such a small periodic and robust positive invariant
tube is easier to find if there exists at least a nominally stable periodic orbit. The aim of
the following consideration is to develop numerical techniques which help us to find and
optimize such periodic tubes.
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Optimization of Periodic Robust Positive Invariant Tubes

The aim of this section is to develop a numerically tractable formulation which helps us
to find and optimize periodic set valued orbits of uncertain differential equations. We
still assume that the right-hand side function f is periodic with respect to its explicit
time dependence, but we switch back our notation allowing that the associated set-valued
propagation can be influenced by a control input u and a parameter p. The periodic
robust optimal control problem of our interest takes now the following form:

min
u(·),p,Te,X(·)

∫ Te
0 L(τ, u(τ), Te, X(τ),W (τ)) dτ + M( p, Te, X(Te) )

s.t. X(τ+) = F (τ, u(τ), p,X(τ),W (τ))

X(0) = X(Te)

0 ≥ H(τ, u(τ), p,X(τ),W (τ)) for all τ ∈ [0, Te] .

(6.3.7)

Here, the constraint function H, and the Lagrange term L are assumed to be periodic
(with period time Te) with respect to their explicit time dependence. The rest of the
notation is as in the previous sections.

Assumption 6.3: We assume that we have functions ϕ, Φ with appropriate dimensions
such that the following property is satisfied: for any given function u : [0, Te]→ Rnu , any
vector p ∈ Rnp , and any function κ : [0, Te]→ Rm++, which admit solutions q : [0, Te]→
Rnx and Q : [0, Te]→ Snx+ of the coupled differential equation

∀τ ∈ [0, Te] :


q̇(τ) = ϕ(τ, u(τ), p, q(τ), Q(τ), κ(τ))

Q̇(τ) = Φ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) ,

the set valued function X(·) := E(Q(·), q(·)) is a robust positive invariant tube on the
interval [0, Te]. Here, ϕ and Φ are assumed to be time-periodic with respect to their
explicit time-dependence.

The strategy is very similar to the previous section, i.e., we assume that Assumption 6.3 is
satisfied and consider the auxiliary periodic optimal control problem, which is associated
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with the above original problem formulation (6.3.7):

inf
ξ(·),ζ(·),π,Te

∫ Te
0 L(τ, u(τ), Te, E(Q(τ), q(τ)),W (τ)) dτ +M(p, Te, E(Q(Te), q(Te)))

s.t.


q̇(τ) = ϕ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) q(0) = q(Te)

Q̇(τ) = Φ(τ, u(τ), p, q(τ), Q(τ), κ(τ)) Q(0) = Q(Te) ,

0 ≥ H(τ, u(τ), E(Q(τ), q(τ)), W (τ)) for all τ ∈ [0, Te] .

(6.3.8)

For this auxiliary problem we can prove the following result:

Theorem 6.3: Provided that Assumption 6.3 is satisfied, the following statements hold:

1. If the function H is component-wise monotonically increasing in X(τ), then every
feasible input (u(·), p) of the auxiliary optimal control problem (6.3.8) corresponds
to a feasible input of the original robust optimal control problem (6.3.7).

2. If the function H is component-wise monotonically increasing in X(τ), while the
objective functions L and M are monotonically increasing in X(τ) and X(Te),
respectively, then the objective value of problem (6.3.8) is an upper bound on the
objective value of the original problem (6.3.7).

3. If the function Φ is constructed from a nonlinearity estimate ΩN, which satisfies the
requirements from Assumption 6.2, such that

Φ(τ, x,Q, κ) = A(τ)Q+QA(τ)T +
m∑
i=1
κiQ+ Ωtotal(τ, x,Q, κ) ,

and if the auxiliary problem 6.3.8 has a positive definite solution Q, then the central
path q is a nominally stable periodic orbit.

Proof: The first two statements of the proof are in principle analogous to the considerations
in the previous sections, in the sense that we can use the relation

T (t, 0)[E(Q(0), q(0))] ⊆ E(Q(t), q(t)) ,

which holds for all t ∈ R+. However, a non-trivial part of the statement is that the
above inclusion implies already the existence of periodic tubes which satisfy the feasibility
condition

∀τ ∈ [0, Te] : X(τ+) = F (τ, u(τ), p,X(τ),W (τ)) as well as X(0) = X(Te) .
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In order to show this, we have to use Lemma 6.1, which can be applied, since we have

cl (T (Te, 0)[ E(Q(0), q(0)) ] ) ⊆ E(Q(0), q(0)) .

Thus, we may conclude the first two statements of the theorem. Finally, we remark that
the third statement is a direct consequence of Theorem 6.2. �

6.4 Open-Loop Stable Orbits of an Inverted Spring Pendu-
lum

In this section, we illustrate how the techniques from the previous section can be used to
find open loop stable orbits for periodic systems in practice. In order to derive a simple but
nonlinear model for an inverted spring pendulum in the 2-dimensional Euclidean space R2,
we first introduce the mass m, which is attached at one end of a spring with given relaxed
length l and spring constant D. The other end of the spring is mounted at a point, which
can move along the vertical axis. We assume that this mounting point has at time t the
coordinate (0, z(t))T , while we can control the associated acceleration u(t) := z̈(t). The
velocity of the mounting point will be denoted by vz(t) := ż(t). Moreover, we assume
that the position of the mass point is given by (x(t), z(t) + y(t))T , i.e., (x, y) is the
relative position coordinate of the mass with respect to the moving oscillatory base. Note
that Figure 6.5 shows a sketch of this construction as well as the numerical values for the
given physical constants.

The associated equations of motion of the form ξ̇(t) = f(ξ(t), u(t), w(t)) can easily be
derived with Newton’s law by employing standard assumptions on the friction-, spring-,
and gravitational forces, which act at the mass point. Here, we summarize the states of
our dynamic system within one vector ξ := (x, y, vx, vy, z, vz) such that the right-hand
side function f becomes

f(ξ, u, w) =



vx
vy

−Dx
m

(
1− l√

x2+y2

)
− bvx + w

−g + u− Dy
m

(
1− l√

x2+y2

)
− bvy

vz
u


. (6.4.1)
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Parameter Value
L 1 m
m 0.1 kg
D 700 N

m
g 9.81 m

s2

b 5 1
s

w 0.03 N
kg

u 200 N
kg

vz 3.2 m
s

Figure 6.5: A sketch of the inverted spring pendulum showing the choice of coordinates as
well as all given numerical values for the parameters which are needed within the problem
formulation.

In this context, the function w is assumed to be a model uncertainty, which could e.g. be
due to an uncertain and time-varying force, which acts at the mass point in a horizontal
direction. The associated uncertainty set is in our example assumed to be a simple interval
of the form W (τ) := [−w,w].

Our aim is to operate the spring pendulum in an open-loop stable periodic orbit with
period time Te ∈ R++ at its “inverted” position. For this aim, we suggest to minimize
the time-average over the maximum displacement of the mass point in x-direction, i.e.,
we introduce a generalized Lagrange term of the form

L(τ, u(τ), Te, X(τ),W (τ)) := max
ξ∈X(τ)

(
eTx ξ

)2

Te
with eTx := ( 1, 0, . . . , 0 )T ∈ R6 .

Finally, the constraint function H is in our example used to formulate simple bounds on
the control input u as well as on the velocity vz of the mounting point:

H(τ, u(τ), X(τ)) :=


u(τ)− u
−u(τ) + u

max
ξ∈X(τ)

eTvzξ − vz

min
ξ∈X(τ)

− eTvzξ + vz

 with eTvz := ( 0, . . . , 0, 1 )T ∈ R6 .

Here, the values for these bounds are all given in Figure 6.5 such that we have all ingredients
which are needed within the problem formulation (6.3.7) remarking that we do not have a
Mayer term in this example while the period time Te > 0 is a free optimization variable.
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170 ROBUST OPEN-LOOP CONTROL

In order to construct a conservative but tractable formulation for this optimal control
problem, we need to find a suitable nonlinearity estimate. For this aim, we first observe
that only the third and fourth component of the right-hand side function (6.4.1) include
nonlinear terms. In order to over-estimate the influence of these terms, we first define the
terms

l3(q,Q) := Dl

m

√
Q33Q44

q4(q4 −
√
Q44)

+ 1
2
Dl

m

(Q33)
3
2

q4(q4 −
√
Q44)2 (6.4.2)

l4(q,Q) := Dl

m

Q33
(q4 −

√
Q44)2 , (6.4.3)

which are designed to overestimate the nonlinear terms in third an fourth component of
the right-hand side function f such that the nonlinearity estimate becomes:

ΩN( τ, q, Q, u, λ ) :=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 l3(q,u,Q)2

λ1
0 0 0

0 0 0 l4(q,u,Q)2

λ2
0 0

0 0 0 0 0 0
0 0 0 0 0 0


.

Now, we have all ingredients which are needed to setup the robust periodic optimal control
problem of the form (6.3.7) and to approximately solve it based on a formulation of the
form (6.3.8). Here, we mention that the Lagrange term can be evaluated as

L(τ, u(τ), Te, E(Q(τ), q(τ)),W (τ)) := max
ξ∈E(Q(τ),q(τ))

(
eTx ξ

)2

Te
= Q3,3(τ)

Te
.

Note that the problem of the form (6.3.8) requires in this example 6 differential states to
implement the dynamics of the central path q : [0, Te] → R6 as well as 36 differential
states for the associated nonlinear differential equation for Q : [0, Te]→ R6×6. However,
we can still reduce the number of states by using that the matrix valued function is
symmetric and that the states z and vz are not affected by the uncertainties such that
in total only a differential equation with 6 + 5·4

2 = 16 states has to be implemented.
Collecting the control inputs, we need one primal control input u, which denotes the
acceleration of the oscillatory base, and 3 dual control inputs κ ∈ R3 to optimize the
estimate of the influence the uncertainty itself and the nonlinear terms respectively. Thus,
we need 4 control inputs in total.
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OPEN-LOOP STABLE ORBITS OF AN INVERTED SPRING PENDULUM 171

Figure 6.6: The upper left part of the figure shows a projection of the optimized periodic
robust positive invariant tube E(Q(·)) onto the t− x-plane. Here, the grey shaded area
represents the region in which the horizontal displacement x(t) of the mass point against
the vertical axis can be guaranteed to be. The upper right part of the figures shows the
optimal central path of the y-coordinate of the mass point. Finally, in the lower left part
of the figure, we can find the optimal control input over three periods while the associated
vertical velocity profile of the mounting point is shown in the lower right part.

Remark 6.2: Note that the existence of open-loop stable periodic orbits of the inverted
spring pendulum is well-known in the literature. As early as in 1908 Stephenson has
predicted this phenomenon [224]. For a more recent article we refer to the work of
Arinstein and Gitterman [10], where the open-loop stable orbits of an inverted spring
pendulum are theoretically analyzed with an approximation technique using Mathieu’s
differential equation [238]. In this thesis, we have used this existing approximate analysis
to find a good initial guess for the optimal control algorithm. In addition, we refer to
the work of Kabamba, Meerkov, and Poh [136] on stability and robustness in vibrational
control, where similar periodically operated dynamic systems are discussed from a control
perspective.

A locally optimal and robustly open-loop stable periodic orbit is visualized in Figure 6.6.
This orbit has been found by solving the above problem formulation numerically using
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172 ROBUST OPEN-LOOP CONTROL

ACADO Toolkit (cf. Chapter 7). The optimal value for the cycle duration is in this
example Te ≈ 79 ms . Note that for a sinusoidal driving force at the oscillatory base the
resonance frequency of the spring would be

ωr = ω0

√
1− 1

2

(
b

ω0

)2
with ω0 :=

√
D

m
.

If we use the parameters from Figure 6.5, we find a corresponding resonance cycle duration
of

Tr = 2π
ωr
≈ 75 ms ,

at which a maximum nominal oscillation amplitude of the spring in y-direction can be
expected. Note that the value for Tr is close to our optimal result for Te. The interpretation
of this effect is that we need a significant amplitude of the spring oscillation in order to
obtain stability – at least, if there would be no oscillation of the spring, the pendulum
cannot possibly be stable at its inverted position. Thus, from a physical point of view,
it is clear that we have to choose a driving frequency which is close to resonance. On
the other hand, if the system is exactly at resonance, it might be more sensitive with
respect to disturbances. In this sense the numerical result for the time Te is in sound with
our physical expectation. Also note that the optimized control input has a bang-bang
structure, which is in our example affected by the bounds on the velocity of the oscillatory
base, too.

Finally, we highlight once more that the considered robust optimal control formulation
yields a guarantee for the region in which the horizontal position x of the nonlinear
pendulum will remain. The corresponding projection of the computed robust positive
invariant tube onto the (t, x)-plain is shown as the grey shadowed region in the upper
right part of Figure 6.6. This statement holds for all disturbance inputs which satisfy
w(τ) ∈ [−w,w] for all times τ ∈ R. Moreover, if there are no uncertainties, i.e., for the
case w = 0, we can make the following statement: whenever we start the dynamic system
inside the computed robust positive invariant tube, it will be attracted by the periodic
orbit until it swings in its the nominal orbit at the inverted position. In other words, we
have a guarantee on the region of attraction, which has been proven in Theorem 6.3.
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Chapter 7

ACADO Toolkit – Automatic
Control and Dynamic Optimization

In this chapter, the software ACADO Toolkit is presented [245], which is based on a joint
development effort together with my colleague Hans Joachim Ferreau and our supervisor
Prof Moritz Diehl. ACADO Toolkit is an optimal control software, which has been
developed for solving general nonlinear optimal control problems. It provides also tailored
algorithms for special classes of optimal control problems such as parameter estimation
problems [38, 207], model predictive control problems [4, 132, 197], multi-objective optimal
control problems [157, 168], as well as robust optimization problems for dynamic systems,
which are the focus of this thesis. Note that this software has been the basis for all the
numerical results which are presented in this thesis. Especially the numerical results for
the robust optimization of the tubular reactor from Section 6.4 as well as the stability
optimization for the inverted spring pendulum from Section 6.2 would not have been
possible without the algorithms which are implemented in ACADO. Note that the following
overview sections about the software ACADO have been published in [131].

7.1 Introduction

The last decades have seen a rapidly increasing number of applications where control
techniques based on dynamic optimization lead to improved performance. These techniques
use a mathematical model in form of differential equations of the process to be controlled
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176 ACADO TOOLKIT – AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION

to predict its future behavior and calculate optimized control actions. This optimization
can be performed once, offline, before the runtime of the process resulting in optimized
open-loop controller. Alternatively, the optimization can be performed, online, during
the runtime of the process in order to obtain a feedback controller. In both cases, the
numerical solution of optimal control problems is the main algorithmic step. Thus, efficient
and reliable optimization algorithms for performing this step are of great interest.

Review of Existing Optimal Control Software

Searching the literature, we can can find a number of optimization algorithms which have
been implemented for solving optimal control problems. We only discuss some of the most
common packages: Let us start the list with the open-source package IPOPT [232, 233],
originally developed by Andreas Wächter and Larry Biegler, which implements an interior
point algorithm for the optimization of large scale differential algebraic systems. It can
be combined with collocation methods for the discretization of the continuous dynamic
system while a filter strategy is implemented as a globalization technique. IPOPT is written
in C/C++ and Fortran, but uses modeling languages like AMPL or MATLAB in order to
provide a user interface and to allow automatic differentiation.

Furthermore, a MATLAB package named PROPT [248] receives more and more attention.
PROPT is a commercial tool, developed by the Tomlab Optimization Inc.. PROPT solves
optimal control problems based on collocation techniques, while using existing NLP solvers
such as KNITRO, CONOPT, SNOPT or CPLEX. Due to the MATLAB syntax, the package PROPT
appears user-friendly – at the price that it is not open-source.

Recently, an open-source optimal control code has been published by Brian C. Fabien [87]
under the name dsoa. This package is written in C/C++ and discretizes differential
algebraic systems based on implicit Runge-Kutta methods. Unfortunately, the package
does only implement single-shooting methods, which is often not advisable for nonlinear
optimal control problems. On the optimization level sequential quadratic programming
techniques are employed.

Similar to dsoa, the proprietary package MUSCOD-II, originally developed by Daniel
Leineweber [151], is suitable for solving optimal control problems. MUSCOD-II discretizes
the differential algebraic systems based on BDF or Runge Kutta integration methods and
uses Bock’s direct multiple shooting technique [43]. Sequential quadratic programming
is used for solving the resulting NLPs. The algorithms implemented in MUSCOD-II are
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INTRODUCTION 177

written in C/C++ and Fortran and based on advanced algorithmic strategies – in particular
because multiple shooting is used instead of single shooting. MUSCOD-II implements
highly efficient code and its algorithmic concepts [43, 40, 150, 151] were an important
source of inspiration for the development of ACADO Toolkit .

Finally, software packages dedicated to nonlinear model predictive control in the process
industry exist, like OptCon [216], or NEWCON [201], which are both based on multiple
shooting.

The Concept of the ACADO Toolkit

The ACADO Toolkit has been designed to be a freely available open-source optimal control
package [245]. It is distributed under the GNU Lesser General Public License (LGPL),
which allows the user to link the package against proprietary software. At the current
status there are direct optimal control methods implemented, which are mainly based on
single- and multiple shooting. For this aim, ACADO provides tailored Runge Kutta as well
as BDF integrators [15] in order to discretize dynamic systems. These integrators can also
compute first and second order sensitivities of the state trajectory with respect to external
control inputs or parameters based on internal numeric or internal automatic differentiation
(IND/IAD) [39]. On the optimization level, specialized sequential quadratic and sequential
convex programming methods (SQP/SCP) are implemented which exploit the particular
structures arising in the context of multiple shooting [150]. These optimization algorithm
are also tailored for parametric optimization problems which arise for example in the context
of model predictive control, moving horizon estimation, and multi-objective optimization
as elaborated within Section 7.2, where we briefly describe the classes of optimization
problems to which ACADO Toolkit can be applied. Depending on the objective, several
SQP implementations are available which can for example be based on exact Hessians,
tailored Block-BFGS updates, or Gauss-Newton Hessian approximations.

Besides the efficient implementation of optimal control algorithms, ACADO Toolkit has
a special emphasis on user-friendliness. The aim is to provide a syntax which allows
the user to state optimal control problems in a way that is very close to the usual
mathematical syntax. For experienced users this might only be a question of convenience.
However, given the fact that dynamic optimization is more and more widely used in
many different engineering applications, also non-experts should be able to formulate their
control problems within a reasonable period of time. The ACADO Toolkit makes intensive
use of the object-oriented capabilities of C++ in order to come up with powerful symbolic
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178 ACADO TOOLKIT – AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION

tools which do not only allow the convenient setup of optimal control problems from the
user perspective, but which also allow automatic differentiation, symbolic manipulations,
optimized C-code export, as well as auto-detection routines, which recognize the structure
of the problem formulation which is then exploited within the algorithms. The symbolic
tools can be seen as the basis of ACADO which make the tool unique in comparison to
existing software packages, as explained within Section 7.3, where also the algorithmic
features as well as the main underlying software modules of ACADO Toolkit are motivated
and described in more detail. Tutorial examples illustrating the use of ACADO Toolkit’s
syntax are given in Section 7.4.

7.2 Problem Classes Constituting the Scope of the Software

ACADO Toolkit highlights three important problem classes. The first problem class are
offline dynamic optimization problems, where the aim is to find an open-loop control
which minimizes a given objective functional. The second class are parameter and state
estimation problems, where parameters or unknown control inputs should be identified by
measuring an output of a given nonlinear dynamic system. The third class are combined
online estimation and model predictive control problems, where parameterized dynamic
optimization problems have to be solved repeatedly to obtain a dynamic feedback control
law.

Optimal Control Problems

One of the basic problem classes which can be solved with ACADO Toolkit are standard
optimal control problems. These problems typically consist of a dynamic system with
differential states x : R→ Rnx , an optional time varying control input u : R→ Rnu , and
time constant parameters p ∈ Rnp . In some cases the formulation of the dynamic system
requires also algebraic states, which we denote by z : R→ Rnz . The standard formulation
of an optimal control problem is shown in Figure 7.1.

For standard optimal control problems the objective functional Φ is typically a Bolza
functional of the form

Φ[x(·), z(·), u(·), p, T ] =
∫ T

t0
L(τ, x(τ), z(τ), u(τ), p, T ) dτ + M(x(T ), p, T ) . (7.2.1)
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A general optimal control problem formulation (OCP):

minimize
x(·),z(·),u(·),p,T

Φ[x(·), z(·), u(·), p, T ]

subject to:

∀t ∈ [t0, T ] : 0 = f(t, ẋ(t), x(t), z(t), u(t), p, T )
0 = r(x(0), z(0), x(T ), z(T ), p, T )

∀t ∈ [t0, T ] : 0 ≥ s(t, x(t), z(t), u(t), p, T )

(OCP)

Example for an optimal control problem formulation implemented with ACADO:

#i n c l u d e <a c a d o t o o l k i t . hpp>

i n t main ( ){

D i f f e r e n t i a l S t a t e x ; // a d i f f e r e n t i a l s t a t e
A l g e b r a i c S t a t e z ; // an a l g e b r a i c s t a t e
C o n t r o l u ; // a c o n t r o l
Parameter p ; // a paramete r
D i f f e r e n t i a l E q u a t i o n f ; // a d i f f e r e n t i a l e q u a t i o n

f << dot ( x ) == −0.5∗x−z+u∗u ; // example f o r a d i f f e r e n t i a l −
f << 0 == z+exp ( z)+x−1.0+u ; // a l g e b r a i c e q u a t i o n .

OCP ocp ( 0 . 0 , 4 . 0 ) ; // OCP with t 0 = 0 .0 and T = 4 .0
ocp . minimizeMayerTerm ( x∗x + p∗p ) ; // a Mayer term to be min imized

ocp . sub j e c tTo ( f ) ; // OCP s h o u l d r e g a r d the DAE
ocp . sub j e c tTo ( AT START , x == 1.0 ) ; // an i n i t i a l v a l u e c o n s t r a i n t
ocp . sub j e c tTo ( AT END , x + p == 1.0 ) ; // an end ( or t e r m i n a l ) c o n s t r a i n t

ocp . sub j e c tTo ( −1.0 <= x∗u <= 1.0 ) ; // a path c o n s t r a i n t

O p t i m i z a t i o n A l g o r i t h m a l g o r i t h m ( ocp ) ; // d e f i n e an a l g o r i t h m
a l g o r i t h m . s o l v e ( ) ; // to s o l v e the OCP.

r e t u r n 0 ;
}

Figure 7.1: A general mathematical formulation of an optimal control problem and a
tutorial code example for an implementation with ACADO.
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180 ACADO TOOLKIT – AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION

The algorithms, which are currently implemented in ACADO Toolkit assume that the
right-hand side function f is smooth or at least sufficiently often differentiable depending
on which specific discretization method is used. Moreover, we assume that the function
∂f

∂(ẋ,z) is always regular, i.e., the index of the DAE should be one. The remaining functions,
namely the Lagrange term L, the Mayer term M , the boundary constraint function r,
as well the path constraint function s are assumed to be at least twice continuously
differentiable in all their arguments.

Note that Figure 7.1 shows next to the general mathematical formulation also an ACADO
implementation example. This example demonstrates how the natural syntax of the toolkit
can be used to implement and solve standard optimal control problems.

Note that some parts of the above formulation are from a mathematical point of view
redundant: For example a Mayer term can always be formulated as a Lagrange term
and vice versa by introducing slack variables. Also the time horizon T and the constant
parameter p could be omitted in the formulation above as they can always be eliminated
by introducing auxiliary differential states. However, from a numerical point of view it
makes sense to use as much structure as possible, such that the above formulation seems
natural. Finally, we mention that optimal control problems contain standard nonlinear
programs (NLPs) by leaving away the constraint ”ocp.subjectTo(f)“.

Parameter and State Estimation

An important class of optimal control problems, which requires special attention, are state
and parameter estimation problems. This subclass of optimal control problems has also
the form (OCP). However, as it will be explained in Section 7.3, parameter estimation
problems with least-square objective terms can be treated with a specialized algorithm
known under the name generalized Gauss-Newton method. Thus, in the case of a general
parameter estimation problem the objective functional Φ takes the form:

Φ[x(·), z(·), u(·), p, T ] =
N∑
i=0
‖hi(ti, x(ti), z(ti), u(ti), p)− ηi‖2Si .

Here, h is called a measurement function while η1, . . . , ηN are the measurements taken at
the time points t1, . . . , tN ∈ [0, T ]. Note that the least-squares term is in this formulation
weighted with positive semi-definite weighting matrices S1, . . . , SN , which are typically
the inverses of the variance covariance matrices associated with the measurement errors.
In ACADO the syntax
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ocp.minimizeLSQ( S, h, eta );

can be used to define least-square objectives.

Model Based Feedback Control

Model based feedback control constitutes the third main problem class that can be tackled
with ACADO Toolkit. It comprises two kinds of online dynamic optimization problems:
the Model Predictive Control (MPC) problem of finding optimal control actions to be
fed back to the controlled process, and the Moving Horizon Estimation (MHE) problem
of estimating the current process states using measurements of its outputs. The MPC
problem is a special case of an (OCP) for which the objective takes typically the form:

Φ[x(·), z(·), u(·), p, T ] =
∫ T

t0
‖y(t, x(t), z(t), u(t), p)− yr‖2S + ‖ye(x(T ), p)− ye

r ‖2R .

Therein, yr is a tracking reference for the output function y and ye
r a reference for a

terminal-weight. The matrices S and R are symmetric and positive semi-definite weighting
matrices with appropriate dimensions. In contrast to OCPs, MPC problems are assumed to
be formulated on a fixed horizon T and employing the above tracking objective function.

In case not all differential states of the process can be measured directly, an estimate has
to be obtained using an online state estimator. This is usually done by one of the many
Kalman filter variants or by solving an MHE problem. The MHE problem has basically the
same form as a parameter estimation problem. Both, the MPC and the MHE problem are
solved repeatedly, during the runtime of the process, to yield a model and optimization
based feedback controller.

Note that throughout this chapter, the terms MPC and MHE are used for both the
linear-quadratic as well as for the general nonlinear case.

7.3 Software Modules and Algorithmic Features

We now discuss details of the software design of ACADO Toolkit and describe its main
software modules. Along with that we highlight a couple of algorithmic features, in
particular the functionality to handle symbolic expressions, that give rise to ACADO
Toolkit’s unique capabilities.
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Figure 7.2: The main algorithmic base classes of ACADO Toolkit

The Basic Structure of the Toolkit

The basic structure of ACADO is outlined in Figure 7.2. In this figure, the six most
important base classes are shown. Starting at the bottom of the figure, a lower level
interface for elementary operations is provided. Classes like “Addition”, “Multiplication”,
etc. inherit from their base class with the name “Expression. This class structure is used
to build up function evaluation trees. Note that the functionality of this low-level part of
ACADO will be explained below.

On the next main level, the base class ”Function“ is introduced. Functions can for example
consist of symbolic expression trees, or linked C-code, or user-written model specifications,
etc. However, the main concept of this base class is that higher level algorithms - e.g.
integration routines - do not need to know what happens inside, i.e., they can evaluate or
differentiate a function independent of whether a symbolic expression tree or a C-function
is evaluated in the background. The functions in ACADO automatically tell the higher
level algorithms whether they provide automatic differentiation.

While the base class ”Integrator“ is an interface for any kind of integration routines the
class ”DynamicDiscretization“ organizes the discretization techniques in the context of
optimal control techniques. Note that the class ”Integrator“ can also be used as a base to
interface external integration routines. Again, the class ”DynamicDiscretization“ hides
the specific mode of discretization in a generic way, i.e., for example an SQP algorithm
does not need to know, whether a differential equation is discretized by collocation or by
a shooting method. Moreover, the class ”DynamicDiscretization“ could also be used to
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interface a PDE discretization tool. Note that this form of modularity is organized in such
a way that the efficiency is not affected, i.e., an optimization method can always ask the
discretization modules for the details, if additional information needs to be passed via
suitable data-structures.

On the higher level NLP solvers can be interfaced via the base class ”NLPsolver”. NLP
solvers are used in the ”OptimizationAlgorithm“ which auto-selects and initializes the
algorithmic sub-modules. Specific implementations of the ”OptimizationAlgorithm“ inherit
from this base class providing tailored drivers for the selected algorithms. For example
the class ”RealTimeAlgorithm“ inherits from ”OptimizationAlgorithm“ and implements
drivers for e.g. running an SQP method with real-time iterations. Finally, we mention
that all the above classes can also be used stand-alone as demonstrated and explained
within the tutorial codes that come with ACADO. In this sense, users and developers can
choose at which part and also at which level of abstraction they want to use or extend
the ACADO toolkit.

Symbolic Expressions

One of the fundamental requirements for an optimal control package is that functions such
as objectives, right-hand sides of differential equations, constraint function etc. can be
provided by the user in a convenient manner. One way to achieve this is that the user links,
for example, a simple C function. However, ACADO Toolkit implements more powerful
features: The idea is to use symbolic expressions as a base class to build up complex
model equations by making extensive use of the C++ class concept as well as operator
overloading. The benefit of this way of implementing functions is that e.g. automatic
detection of dependencies and dimensions, automatic as well as symbolic differentiation,
convexity detection etc. are available.

In order to explain this concept, we consider the ACADO tutorial code Listing 7.1. Compiling
and running this simple piece of code with a standard C++ compiler linking ACADO shows –
as expected – that the dimension of the defined function f is two and that it depends
on one differential state. Moreover, the convexity of the components of f is recognized.
Note that these auto-detection routines are typically needed by developers. In most
situations, the only remaining work for a user is to define his/her function, while the
dimension, structure etc. can be detected by the algorithms we want to use. Due to
operator overloading the syntax can be used as if we would write standard C/C++ code.
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Listing 7.1: Dimension and convexity detection for symbolic functions
i n t main ( ){

D i f f e r e n t i a l S t a t e x ;
I n t e r m e d i a t e S t a t e z ;
TIME t ;
Func t i on f ;

z = 0 .5∗ x + 1 .0 ;

f << exp ( x ) + t ;
f << exp ( z+exp ( z ) ) ;

p r i n t f ( ” the d imens ion o f f i s %d \n” , f . getDim ( ) ) ;
p r i n t f ( ” f depends on %d s t a t e s \n” , f . getNX ( ) ) ;
p r i n t f ( ” f depends on %d c o n t r o l s \n” , f . getNU ( ) ) ;

i f ( f . i sConvex ( ) == BT TRUE )
p r i n t f ( ” a l l components o f f u n c t i o n f a r e convex . \n” ) ;

r e t u r n 0 ;
}

For example, the intermediate variable z in Listing 7.1 would only be evaluated once if we
evaluate f at a given point, i.e., the symbolic expressions behave as expected.

For a complete overview of the features that are implemented, we refer to the manual [130],
where also a lot of commented tutorial codes can be found. Here, we only briefly outline
some of the features:

• Automatic differentiation: The symbolic notation of functions enables us to
provide not only numeric- but also automatic- and symbolic differentiation. The
automatic differentiation [33, 109, 110] is implemented in its forward as well as
in the adjoint mode for first and (mixed) second order derivatives. Moreover, all
expressions can symbolically be differentiated returning again an expression, like AD
with source code transformation. This functionality can be used recursively leading
to arbitrary orders of symbolic differentiation. Note that the class ”Function“ in
Figure 7.2 does not necessarily need to evaluate symbolic expression trees, it is also
possible to link a C-function as well as evaluation routines for the corresponding
directional derivatives. Thus, it is also possible to link existing AD packages such
as ADOL-C [110]. However, using the built-in ACADO routines avoids unnecessary
overhead.
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Listing 7.2: The definition of a linear function with ACADO
Matr i x A( 3 , 3 ) ;
Vecto r b ( 3 ) ;
D i f f e r e n t i a l S t a t e V e c t o r x ( 3 ) ;
Func t i on f ;

A . s e t Z e r o ( ) ;
A( 0 , 0 ) = 1 . 0 ; A( 1 , 1 ) = 2 . 0 ; A( 2 , 2 ) = 3 . 0 ;
b (0 ) = 1 . 0 ; b (1 ) = 1 . 0 ; b (2 ) = 1 . 0 ;

f << A∗x + b ;

• Convexity detection: As we have already illustrated in the example code, functions
can be tested for convexity/concavity. The corresponding algorithmic routines are
based on disciplined convex programming [106]. Note that the syntax for the routines
is (almost) the same as in the MATLAB package CVX [107]. As the ACADO code is
C++ based, the convexity detection is in general faster than MATLAB. However, this
is minor advantage in the sense that convexity detection is typically only used as a
pre-processing tool.

• Code optimization: In the context of optimal control algorithms, right-hand side
functions are typically evaluated many times. Thus, it is efficient to pre-optimize
functions internally during the initialization phase. In the ACADO Toolkit this
pre-optimization is automatically done. For example if a linear function f is defined
by the code piece in Listing 7.2, we would expect that a single evaluation of the
function f at a given vector x∈ R3 would involve 18 flops: 9 multiplications and
9 additions, as the matrix-vector product A*x with the matrix A∈ R3×3 together
with the addition of the vector b∈ R3 requires this complexity. However, ACADO
Toolkit auto-detects the zero entries in the matrix A, which is in this example
diagonal, such that the evaluation of f costs only 6 flops – 3 multiplications and 3
additions. The price that we have to pay for this internal code optimization is that
the “loading” of the functions takes longer, which is however usually a worthwhile
investment of computation time, if f is evaluated very often. Finally, it remains to
be mentioned that ACADO Toolkit would in this case also detect that f is linear.

• C Code Generation: Writing a model function within the ACADO notation does not
mean to go into a one way street. A symbolic function can later also be exported
in form of (optimized) standard C code. This is especially interesting for model
predictive controllers where the time for one function evaluation can be crucial.

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



186 ACADO TOOLKIT – AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION

In [132] the idea of automatically generated C-codes is employed to export highly
efficient real-time Gauss-Newton methods, for which the presented symbolic tools
in ACADO are used.

Integration Algorithms

For the optimization of dynamic systems based on single or multiple shooting methods [43]
it is necessary to simulate differential or differential-algebraic equations. In addition,
sensitivities of the state trajectory with respect to initial values, control inputs, etc. must
be provided. For this aim, ACADO Toolkit comes along with state of the art integration
routines such as several step-size controlled Runge-Kutta methods as well as a BDF
(backward differentiation formula) method which is used for stiff differential or differential
algebraic equations. Note that the ACADO BDF integrator, which is based on the algorithmic
ideas in [11, 15, 186], can also deal with fully implicit differential algebraic equations of
index 1, which have the form

∀t ∈ [0, T ] : F (ẏ(t), y(t), u(t), p, T ) = 0 . (7.3.1)

Here, differential and algebraic states are merged into one state vector y, while u, p, and T
are defined as in Section 7.2. However, note that in most optimal control problems arising
in practice the right-hand side F is linear in ẏ. Moreover, the ACADO BDF integrator uses
a diagonal implicit Runge-Kutta starter in order to avoid too small steps taken by the
multi-step method at the beginning of each multiple shooting interval.

All integrators provide first and second order differentiation techniques in order to compute
sensitivities of the state trajectory with respect to initial values and control/parameter
inputs. Here, the differentiation can either be based on internal numerical differentiation [39,
15] or on (internal) automatic differentiation. However, for automatic differentiation, the
right hand side functions must be provided in the ACADO syntax, i.e., in form of the class
Function. For the case that plain C++ or MATLAB functions are linked the expression for
the Jacobian should be provided, too. Otherwise, numeric differentiation will be used.

Finally, it should be mentioned that the integration routines that are currently
implemented within the ACADO Toolkit are very similar to existing integrator packages
like Sundials [247] or DAESOL [15] with respect to both the algorithmic strategies as
well as the performance. In order to provide consistent and self-contained C++ code,
the integration routines have been implemented in cooperation with the class Function,
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which detects for example the sparsity patterns of the right-hand side functions. In the
current release, ACADO Toolkit provides the possibility to use sparse linear algebra solver
(e.g. the solver C-Sparse [64]) within the BDF integrator.

Note that also a stand-alone sub-package ACADO Integrators is available [245] that
also provides an elaborate MATLAB interface.

Discretization of Dynamic Systems

Once an integrator for dynamic systems is avaliable, the original continuous optimal control
problem (OCP) can be discretized. Here, several strategies can be applied. The most
simple strategy is to regard the simulation of the system as a function evaluation depending
on the initial values, parameters, control inputs, etc.. The corresponding discretization
method is known under the name single shooting. In ACADO Toolkit not only single
shooting but also multiple shooting methods are implemented, which have turned out
to out-perform single shooting methods in many cases [43, 150]. In multiple shooting
methods, the whole time interval is divided into several multiple shooting intervals on
each of which the dynamic system is discretized using an integrator.

As an alternative to multiple shooting, collocation methods have attracted a lot of attention
during the last decades [31, 233]. Here, the dynamic system is discretized at the level
of the NLP leading to quite large and sparse nonlinear programs. In ACADO Toolkit,
collocation methods are actually under development and will be released in the near future.

Nonlinear Optimization Algorithms

Once a dynamic system can be discretized, the optimal control problems that have been
introduced in Section 7.2 can be transformed into nonlinear programs (NLPs). The
mathematical standard form of such NLPs is

minimize
x

Φ(x)
subject to G(x) = 0

H(x) ≤ 0
(7.3.2)

Note that in the optimal control context, the discretized NLP has a certain structure. For
the case that multiple shooting is used for the discretization, ACADO Toolkit exploits
the structure via condensing techniques that are based on the ideas in [43, 150]. In order
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to solve the usually nonlinear NLPs, state of the art optimization algorithms are needed.
Currently, ACADO Toolkit provides several SQP-type methods that can e.g. be based on
BFGS Hessian approximations, as described in [190], or on Gauss-Newton methods [38].
In addition, line search globalization routines [190, 115] as well as auto-initialization
techniques are implemented to make the optimization routines as reliable as possible. In
case an underlying quadratic program (QP) becomes infeasible during the SQP iterations,
all QP constraints are automatically relaxed using slack variables that are `1-penalized
in the objective function. A tutorial code explaining how these optimization tools can
be used will be discussed in Section 7.4. Note that collocation methods combined with
interior point techniques, as e.g. described in [31], are not yet supported in the current
release of ACADO Toolkit.

However, although the ACADO Toolkit comes along with its own optimization routines, it
is designed to be extended with existing implementations of optimization algorithms. The
software design, which makes use of well-established C++ interface concepts such as abstract
base classes and inheritance, allows to use ACADO Toolkit as a test and implementation
platform for new developments. For example, in the current implementation the plain C++
code qpOASES [246] is linked as default QP solver. Thus, ACADO Toolkit is not only
designed as a high-end tool for solving optimal dynamic optimization and control problems
but also as a framework that can be filled and extended in many ways.

Real-Time Iterations

As mentioned in Section 7.2, MPC problems can from a pure algorithmic optimization
perspective be interpreted as a special kind of optimal control problems. In particular, they
depend parametrically on the current initial value x0 of the process. This special property is
exploited within the ACADO Toolkit by applying the real-time iteration scheme presented
in [69, 73]. It builds on a direct multiple shooting discretization and only performs one
SQP-type iteration using a Gauss-Newton Hessian approximation per feedback loop.

The computations in each iteration are divided into a long “preparation phase”, in which
the system linearization, possible elimination of algebraic variables and condensing of
the linearized subproblem are performed, and a much shorter “feedback phase” that just
solves one condensed quadratic program. This feedback phase can be orders of magnitude
shorter than the preparation phase. In the case of a linear process model, the real-time
iteration scheme gives the same feedback as a linear MPC controller. Error bounds and
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closed-loop stability of the scheme have been established for nonlinear MPC with shifted
and non-shifted initializations in [76] and [75].

7.4 Tutorial Examples and Numerical Tests

In this section we discuss two code examples: the first one implements a simple time
optimal control problem while the second one explains how to set up a simple state and
parameter estimation problem with ACADO. Tutorials for closed-loop simulations using
real-time iterations can be found on the ACADO Toolkit web-site [245]. Moreover, the
efficiency of the ACADO implementation of real-time iterations is demonstrated in [91],
where a online simulation of a kite system is discussed. Note that ACADO is currently
designed for systems with 10 to 100 states [91, 157]. For large scale systems new
algorithmic features need to be added or external optimization packages can be linked.

An Introductory Optimal Control Problem

In this section it is explained how to setup a simple optimal control problem using the
ACADO Toolkit. The aim of this tutorial is to solve an example problem of the form:

minimize
s(·),v(·),m(·),u(·),T

T

subject to:

∀t ∈ [0, T ] : ṡ(t) = v(t)

v̇(t) = u(t)−0.2 v(t)2

m(t)

ṁ(t) = −0.01u(t)2

s(0) = 0 , v(0) = 0 , m(0) = 1
s(T ) = 10 , v(T ) = 0
−0.1 ≤ v(t) ≤ 1.7
−1.1 ≤ u(t) ≤ 1.1

5 ≤ T ≤ 15

. (7.4.1)

This problem is based on a simple free-space rocket model with 3 states: the distance s,
the velocity v, and the mass m of the rocket. The aim is to fly in minimum time T from
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Listing 7.3: An implementation of the optimal control problem (7.4.1)
i n t main ( ){

D i f f e r e n t i a l S t a t e s , v ,m ; // the d i f f e r e n t i a l s t a t e s
C o n t r o l u ; // the c o n t r o l i n p u t u
Parameter T ; // the t ime h o r i z o n T
D i f f e r e n t i a l E q u a t i o n f ( 0 . 0 , T ) ; // the d i f f e r e n t i a l e q u a t i o n

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OCP ocp ( 0 . 0 , T ) ; // t ime h o r i z o n o f the OCP: [ 0 ,T]
ocp . minimizeMayerTerm ( T ) ; // the t ime T s h o u l d be o p t i m i z e d

f << dot ( s ) == v ; // an imp l ementa t i on
f << dot ( v ) == ( u−0.2∗ v∗v )/m; // o f the model e q u a t i o n s
f << dot (m) == −0.01∗u∗u ; // f o r the r o c k e t .

ocp . sub j e c tTo ( f ) ; // min im ize T s . t . the model ,
ocp . sub j e c tTo ( AT START , s == 0.0 ) ; // the i n i t i a l v a l u e s f o r s ,
ocp . sub j e c tTo ( AT START , v == 0.0 ) ; // v ,
ocp . sub j e c tTo ( AT START , m == 1.0 ) ; // and m,

ocp . sub j e c tTo ( AT END , s == 10 .0 ) ; // the t e r m i n a l c o n s t r a i n t s f o r s
ocp . sub j e c tTo ( AT END , v == 0.0 ) ; // and v ,

ocp . sub j e c tTo ( −0.1 <= v <= 1.7 ) ; // as w e l l as the bounds on v
ocp . sub j e c tTo ( −1.1 <= u <= 1.1 ) ; // the c o n t r o l i n p u t u ,
ocp . sub j e c tTo ( 5 .0 <= T <= 15.0 ) ; // and the t ime h o r i z o n T.

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

O p t i m i z a t i o n A l g o r i t h m a l g o r i t h m ( ocp ) ; // the o p t i m i z a t i o n a l g o r i t h m
a l g o r i t h m . s o l v e ( ) ; // s o l v e s the problem .

r e t u r n 0 ;
}

s(0) = 0 to s(T ) = 10, while constraints on the velocity v and the control input u should
be satisfied. The rocket starts with velocity v(0) = 0 and should stop at the end time T ,
which can be formulated in form of the constraint v(T ) = 0.

The corresponding ACADO code, which solves the above optimal control problem numerically,
can be found in Listing 7.3. In this example, we do not specify the NLP solver explicitly, but
the class OptimizationAlgorithm chooses by default a multiple shooting discretization
method with 20 multiple shooting and control intervals in combination with an SQP
algorithm. For the integration, a Runge Kutta solver with order 4 and error control order
5 is chosen. Please note that in this code example no initialization is specified. Here, an
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#: KKT t o l . Obj . Value
−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 : 1 .001 e+03 1 .000 e+01
2 : 5 .766 e+00 9 .950 e+00
3 : 2 .946 e−02 9 .932 e+00
4 : 7 .481 e−02 9 .906 e+00
. . .
. . .
. . .
12 : 8 .740 e−04 7 .442 e+00
13 : 3 .308 e−07 7 .442 e+00
−−−−−−−−−−−−−−−−−−−−−−−−−−−

conve rgence a c h i e v e d .

Figure 7.3: SQP iteration output and a plot of the optimal results for problem (7.4.1).

auto-initialization routine has been implemented, which works well for optimal control
problems that are either not too nonlinear or convex. Otherwise an initialization can for
example be provided in form a simple txt-file or as a matrix containing an initial guess for
the optimal solution.

In order to visualize the results, a user-friendly Gnuplot interface is available, whose use is
outlined in the numerous tutorial examples coming along with the ACADO Toolkit. A
Gnuplot screenshot together with the output of the iterations taken by the SQP method
is shown in Figure 7.3.

Comparing the implementation in Listing 7.3 with the corresponding mathematical
problem (7.4.1) the syntax can quite intuitively be understood. Note that the dimensions
of the problem as well as the dependencies have been auto detected. In addition, the
structure of the problem is exploited by the numerical algorithm: for example the control
constraints of the form

−1.1 ≤ u(t) ≤ 1.1

are internally detected as bounds. In contrast, e.g. a general constraint of the form

u(t)2 + u(t) ≤ 1.1

would have been more expensive as the derivative of the constraint function needs to be
evaluated during the SQP iterations. Moreover, the bounds are efficiently used within
the QP solver, which is needed during the SQP iterations. Note that all these types of
auto-detection routines are a major advance in comparison to most other existing optimal
control packages in terms of user-friendliness and automatic generation of efficient code.
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A Tutorial Parameter Estimation Problem

Similar to the standard optimal control problem case from the last section, we discuss in
this section a tutorial which explains how parameter and state estimation problems can be
formulated and solved within ACADO Toolkit. For this aim, we consider the problem

minimize
φ(·),α,l

∑10
i=1 (φ(ti)− ηi)2

subject to:

∀t ∈ [0, T ] : φ̈(t) = −g
l φ(t)− αφ̇(t)

0 ≤ α ≤ 4
0 ≤ l ≤ 2

. (7.4.2)

Here, a simple pendulum model is regarded, which consists of the state φ representing the
excitation angle; variable φ̇ denotes the angular velocity. The constant g = 9.81 is the
gravitational constant while the friction coefficient α and the length l of the cable are only
known to lie between certain bounds. We assume that the state φ has been measured at
several times.

In Listing 7.4 a tutorial code is shown which solves problem (7.4.2) numerically. Note that
the data file, which is read by the routine, is shown in the left part of Figure 7.4. Here,
2 of the 10 measurements were not successful leading to “nan” entries in the data file.
Moreover, the measurements have not been taken on a equidistant time grid. Nevertheless,
the ACADO code which solves the above parameter estimation problem is easily set up and
deals automatically with the non-equidistant measurements and with the failures in the
measurement data.

Note that the parameter estimation algorithm chooses by default a Gauss-Newton SQP
method using the structure of the least-squares objective. In the output of the method
the result for the parameter estimation is displayed in the form which is shown in the
lower right part of Figure 7.4. Note that the computation of the standard deviations of
the parameter estimates is based on a linear approximation in the optimal solution as
proposed in [38].
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Listing 7.4: An implementation of the parameter estimation problem (7.4.2)
i n t main ( ){

D i f f e r e n t i a l S t a t e phi , dph i ; // the s t a t e s o f the pendulum
Parameter l , a l pha ; // i t s l e n g t h and the f r i c t i o n
const double g = 9.81 ; // the g r a v i t a t i o n a l c o n s t a n t
D i f f e r e n t i a l E q u a t i o n f ; // the model e q u a t i o n s
Funct i on h ; // the measurement f u n c t i o n

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OCP ocp ( 0 . 0 , 2 . 0 ) ; // c o n s t r u c t an OCP
h << ph i ; // the s t a t e ph i i s measured
ocp . minimizeLSQ ( h , ” data . t x t ” ) ; // f i t h to the data

f << dot ( p h i ) == dph i ; // a s y m b o l i c imp l ementa t i on
f << dot ( dph i ) == −(g/ l ) ∗ s i n ( ph i ) // o f the model

−a lpha ∗ dph i ; // e q u a t i o n s

ocp . sub j e c tTo ( f ) ; // s o l v e OCP s . t . the model ,
ocp . sub j e c tTo ( 0 .0 <= alpha <= 4.0 ) ; // the bounds on a lpha
ocp . sub j e c tTo ( 0 .0 <= l <= 2.0 ) ; // and the bounds on l .

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

P a ra m e t e r E s t im a t i o n A l go r i t h m a l g o r i t h m ( ocp ) ; // the paramete r e s t i m a t i o n
a l g o r i t h m . s o l v e ( ) ; // s o l v e s the problem .

r e t u r n 0 ;
}
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ACSII file “data.txt” containing the
measurements:

TIME POINTS MEASUREMENTS
−−−−−−−−−−− −−−−−−−−−−−−
0.00000 e+00 1.00000 e+00
2.72321 e−01 nan
3.72821 e−01 5.75146 e−01
7.25752 e−01 −5.91794e−02
9.06107 e−01 −3.54347e−01
1.23651 e+00 −3.03056e−01
1.42619 e+00 nan
1.59469 e+00 −9.64208e−02
1.72029 e+00 −1.97671e−02
2.00000 e+00 9.35138 e−02

The f i t t i n g r e s u l t s :
−−−−−−−−−−−−−−−−−−−−
l = 1 .001 e+00 +/− 1 .734 e−01
a lpha = 1.847 e+00 +/− 4 .059 e−01

Figure 7.4: Data file containing the measurements as well as the fitting results obtained
by the Gauss-Newton method applied to problem (7.4.2).
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Chapter 8

An Auto-Generated Real-Time
Iteration Algorithm for Nonlinear
MPC

In this chapter we present an automatic C-code generation strategy for real-time nonlinear
model predictive control (NMPC), which is designed for applications with kilohertz sample
rates. The corresponding code export module has been implemented within the software
package ACADO Toolkit (cf. Chapter 7). It is capable of exporting fixed step-size
integrators together with their sensitivities as well as a real-time Gauss-Newton method.
Here, we employ the symbolic representation of optimal control problems in ACADO in order
to auto-generate plain C-code which is optimized for final production. The exported code
has been tested for model predictive control scenarios comprising constrained nonlinear
dynamic systems with four states and a control horizon of ten samples. The numerical
simulations show a promising performance of the exported code being able to provide
feedback in much less than a millisecond. Note that the following sections are based on a
journal article [132], which has been accepted for publication in Automatica.

8.1 Introduction

A recent trend in the field of convex optimization goes into the direction of automatic
code export leading to automatically generated and customized interior point solvers.
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These optimized solvers have proven to be real-time feasible for online optimization with
a sampling time in the microsecond range [166]. The advantages of code generation are
at first place the efficiency of the exported plain C-code. In addition, auto-generated code
can increase the reliability as all memory can be made static and conditional jumps can
be mostly avoided. In addition, plain and self-contained C-code can easily be compiled for
PC-like embedded hardware and possibly also for field-programmable gate arrays (FPGAs).

If a process model is derived from first-principle physical laws, we often end up with a
nonlinear dynamic system, for which convex optimization techniques can typically not be
applied. Although convex optimization covers a wide range of applications [21, 46], it can
usually not directly deal with nonlinear dynamics which often arise if the process model
is derived from first-principle physical laws. In order to be able to deal with non-linear
dynamics in the control context, nonlinear model predictive control (NMPC) algorithms
are a well-known tool [5, 32, 79]. The idea to use code generation for NMPC has been
introduced by Ohtsuka in form of the tool AutoGenU [183]. It exports C-code, and uses a
continuation Newton method for the optimality system. At each sampling instant one
linear system has to be solved with a GMRES algorithm. Computation times of 1.5 ms per
iteration have been reported for an experimental hovercraft setup [210]. Another approach
is the advanced step NMPC controller [242] which, however, solves a full nonlinear program
at each sampling instant. Yet a different approach is the nonlinear real-time iteration (RTI)
scheme [68, 73]. Like the previous approaches, it uses a similar continuation Newton-type
framework for which nominal stability has been shown [75] but solves one QP at each
iteration. This allows for multiple active set changes and thus ensures that the nonlinear
MPC algorithm cannot perform worse than a linear MPC controller. An overview of
existing algorithms for fast nonlinear MPC can be found in [74].

The RTI scheme has originally been developed for large scale chemical engineering
applications. The aim of this chapter is to demonstrate that NMPC algorithms based on
the RTI scheme can be optimized and auto-generated efficiently aiming at sampling times
in the milli- and micro-second range. In order to allow for these ultra-fast execution times,
we reduce the algorithmic components of the nonlinear real-time iteration scheme [73]
to the absolute minimum. This allows us to auto-generate optimized C-code that is
suitable for ultra-fast computation and export onto embedded hardware. Here, a symbolic
representation of optimal control problems is indispensable as this allows for efficient
dependency and sparsity detection as well as automatic differentiation and code export.
Consequently, the open-source software ACADO Toolkit [131] – which is based on symbolic
optimal control problem formulations – is a natural framework for the implementation of
C-code export tools for nonlinear model predictive control.
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In Section 8.2 we introduce the algorithmic core of the real-time iteration scheme, while
Section 8.3 explains the newly developed ACADO Code Generation tool. In Section 8.4
we demonstrate the performance of the implemented tools.

8.2 The Real-Time Iteration Algorithm for Nonlinear Opti-
mal Control

Throughout this chapter we are interested in nonlinear optimal control problems of the
form

min
ξ(·),ζ(·)

∫ T
0
(
‖ξ(τ)‖22 + ‖ζ(τ)‖22

)
dτ

s.t. ξ̇(t) = f( ξ(t), ζ(t) )
ξ(0) = ξ0

z ≤ ζ(t) ≤ z for all t ∈ [0, T ] .

(8.2.1)

Here, ξ : R → Rn denotes the state, ζ : R → Rm the control input, and z, z ∈ Rm
the control bounds. The right-hand side function f can be non-linear in both states
and controls, while the objective is a least-squares tracking term with ‖ · ‖2 denoting
the Euclidean norm. In the context of nonlinear MPC, ξ0 ∈ Rn is the current state
measurement.

A more general optimal control problem formulation would also include non-autonomous
dynamics, time-varying tracking references, a weighting in the objective, a quadratic Mayer
term penalizing ξ(T ), non-linear state and control constraints, zero terminal constraints,
etc. The proposed algorithms and software implementations can deal with all these
issues as illustrated within the examples in Section 8.4. However, we prefer to keep our
presentation simple and work for the moment with the formulation (8.2.1) which can later
be generalized.

Recall that direct methods for optimal control [32, 68] proceed in two steps: first, we
discretize the problem. And second, we solve a finite dimensional nonlinear program.

Discretization of the Optimal Control Problem

For the discretization of the nonlinear dynamics several options exist. Collocation
methods [32] directly represent the states as polynomials with a finite number of coefficients.
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Figure 8.1: A suitable Butcher tableau for a Runge-Kutta integrator with order 4 for fixed,
pre-optimized step-sizes.

Alternatively, single- or multiple shooting discretization methods [38, 152, 68] can be
employed where an integrator is used in order to simulate the dynamic system. In this
chapter, we concentrate on single- and multiple shooting techniques which use in the
simplest case a piecewise constant control discretization

ζ(t) ≈
N∑
i=1

ziI[ti,ti+1)(t) ,

where I[a,b)(t) is equal to 1 if t ∈ [a, b) and equal to 0 otherwise. The time sequence
0 = t1 < t2 < . . . < tN+1 = T can e.g. be equidistant. We define

z :=
(
zT1 , . . . , z

T
N

)T
∈ Rnz

with nz := Nm to achieve a convenient notation.

Let us regard the solution ξ(ti+1) (with i ∈ {1, . . . , N}) of the differential equation

∀τ ∈ [ti, ti+1] : ξ̇(τ) = f(ξ(τ), zi) and ξ(ti) = xi

as a function Ξi(xi, zi) = ξ(ti+1) depending on the discrete control input zi and on
the multiple shooting node xi which is the initial value for the i-th control interval.
Here, the operator Ξi is the solution operator of the differential equation, which can
numerically be evaluated by using an integrator. As a reasonable step-size choice can
often be pre-optimized before run-time, we suggest to employ a standard Runge-Kutta
method using a constant step-size once the integrator is running in online mode. Note
that a Runge-Kutta integrator whose Butcher tableau contains many zero entries can be
beneficial. For example, exploiting the four zero-entries of the Butcher tableau of order 4
shown in Figure 8.1 reduces the computational load of each integration step by about one
third.
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We discretize the continuous least-squares objective as∫ T

0

(
‖ξ(τ)‖22 + ‖ζ(τ)‖22

)
dτ ≈ ‖F (x, y, z)‖22

where F (x, y, z) :=
(
yT , xT , zT

)T
. Here, the vector x :=

(
xT1 , . . . , x

T
N

)
summarizes

the multiple shooting nodes but the initial value y := x0. Moreover, we denote the
multiple-shooting residual as

G(x, y, z) :=


x1 − Ξ(y, z1)
x2 − Ξ(x1, z2)

...
xN − Ξ(xN−1, zN )

 . (8.2.2)

Now, we can summarize the result of the multiple-shooting discretization as

min
x,y,z

‖F (x, y, z)‖22
s.t. y = ξ0

0 = G(x, y, z)
z ≤ z ≤ z .

(8.2.3)

This large but sparse nonlinear program must be solved in real-time and for changing
measurement inputs ξ0. The next section explains this in more detail.

Real-Time Iteration Algorithm

In order to solve least-squares NLPs of the form (8.2.3), generalized Gauss-Newton
methods, as originally proposed in [38], have turned out to perform very well in practice.
An offline full-step version of this method starts from an initial guess (x0, y0, z0) and
generates iterates of the form x+ = x + ∆x, y+ = y + ∆y and z+ = z + ∆z where
(∆x,∆y,∆z) solves the convex QP

min
∆x,∆y,∆z

‖F + Fx∆x+ Fy∆y + Fz∆z ‖22
s.t. y + ∆y = ξ0

G+Gx∆x+Gy∆y +Gz∆z = 0
z ≤ z + ∆z ≤ z .

(8.2.4)
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Real Time Iterations for Nonlinear MPC:

Initialization: Choose initial values for (x, y, z).
Repeat Online:

1) Evaluate F,G and Fx,y,z, Gx,y,z at (x, y, z).
2) Perform the condensing, i.e., compute Ry, Rz, R.
3) Wait for the measurement ξ0.
4) Compute Q, i.e., perform the initial value embedding step (8.2.7).
5) Solve the condensed QP (8.2.8).
6) Send the control input z+

1 immediately to the process.
7) Update (x, y, z)← (x+, y+, z+) and shift the time.

Figure 8.2: An illustration of the real-time iteration scheme.

Here, we have introduced the following short hands:

F := F (x, y, z) , Fx := ∂xF (x, y, z) etc.

Although the Gauss-Newton method converges in general only linearly1 to a local minimizer
(x∗, y∗, z∗) of the problem (8.2.3), it can perform very well in practice if either the least-
squares residual is small or if the function G is only mildly non-linear [38].

In the context of model predictive control, the above method is separated into a preparation
and a feedback step [73], as the current measurement ξ0 might not yet be available when
we start solving the problem (8.2.3). Following the real-time iteration idea, as originally
proposed in [73], we separate the algorithmic strategy into a preparation and a feedback
step. In the preparation step, we evaluate F and G, compute the associated sensitivities
Fx, Fy, Fz and Gx,Gy,Gz and perform a condensing step without knowing ξ0 yet. Here,
condensing refers to the computation of

Ry := Fy − FxG−1
x Gy , Rz := Fz − FxG−1

x Gz ,

and R := F − FxG−1
x G .

(8.2.5)

1We assume that F and G are differentiable with Lipschitz continuous Jacobians, while the reduced
Jacobian Rz from equation (8.2.5) is assumed to have always full column-rank.
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This means that the sparse quadratic problem (8.2.4) is reduced to a smaller QP of the
form

min
∆y,∆z

‖Ry∆y +Rz∆z +R ‖22
s.t. y + ∆y = ξ0

z ≤ zi + ∆zi ≤ z .

(8.2.6)

Once the measurement ξ0 is available, we perform an initial value embedding step, i.e.,
we compute the matrix vector product

Q := Ry (ξ0 − y) +R (8.2.7)

constructing a dense and convex QP of the form

min
∆z

‖Rz∆z +Q ‖22 s.t. z ≤ zi + ∆zi ≤ z (8.2.8)

which has only the input sequence ∆z as a remaining degree of freedom. Solving this small
and dense QP with a suitable QP solver completes the feedback step. Once its solution
z+ is available, we apply the first control z+

1 to the process, shift the time horizon of the
MPC, and perform the next preparation step. Figure 8.2 illustrates this real-time iteration
idea in form of a pseudo code. For a mathematical foundation of this method including
stability theorems, we refer to [4, 68, 75, 242]. Please note that the above algorithm can
also be transferred to the single shooting discretization if we use xi+1 := Ξ(xi, zi) for all
i ∈ {0, . . . , N}. In this case we have always G(x, y, z) = 0 during the iteration, which
implies R = F .

Limitations of the Real-Time Iteration Scheme

When using the above nonlinear MPC algorithm in real-world applications, the following
issues may lead to a failure of the algorithm:

Infeasibility: If formulation (8.2.1) additionally comprises state constraints or non-
convex control constraints, two types of infeasibility can occur: first, the nonlinear online
optimization problem itself can be infeasible. And second, the underlying quadratic
programming problem within the SQP-type algorithm can become infeasible.

The first type of infeasibility is a general problem of NMPC algorithms. A possible remedy
is the use of zero-terminal constraints and to solve the online optimization problem in every
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step exactly. Assuming that the first optimization problem including the zero-terminal
constraint is feasible, that no uncertainties occur, and that exact state measurements are
available, it can be shown that all online optimization problems remain feasible [197].

For handling the second type of infeasibility suitable strategies exist [60]. Note that QP
infeasibility cannot occur if only control bounds z ≤ z ≤ z are present.

Instability: Even if we assume that the online optimization problems all remain feasible,
there are two reasons why the closed-loop system can become unstable. First, the closed-
loop system can be unstable, as we have a finite horizon only. This problem can be
addressed by using suitable end weights or zero terminal constraints [197]. Second, we
might leave the region of contraction of the Gauss-Newton method, e.g. due to a large
disturbance. This must be avoided employing suitable globalization strategies if necessary.
Note that for the above real-time iteration scheme, local asymptotic closed-loop stability
can be guaranteed assuming suitable end weights in combination with other regularity
conditions [68, 72, 75].

8.3 The ACADO Code Generation Tool

The ACADO Toolkit is an open-source software tool for automatic control and dynamic
optimization [131]. The aim of this section is to explain the newly developed ACADO Code
Generation tool which makes use of the symbolic features of ACADO to export optimized
C-code. Here, we follow an idea from [166], where automatic generation of C-code for
convex optimization was suggested, and extend it to nonlinear dynamic systems.

Symbolic Representations of MPC Formulations

Let us consider a simple example for a nonlinear function defined as

f(φ, ω) := −g sin(φ)− a cos(φ)− bω . (8.3.1)

Once we implement this function in plain C, we can evaluate it for a given input. However,
for example the fact that f is affine in ω can not explicitly be detected if f is given in form
of a standard C-function. In order to overcome this limitation, ACADO Toolkit represents
functions in a symbolic form as illustrated in Figure 8.3.
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Figure 8.3: The operator based tree-representation of the example function (8.3.1) as
used in the software ACADO Toolkit.

This enables us for example to compute the derivative of f with machine precision using
automatic differentiation or to detect the zero-entry in the Jacobian of f with the aim to
generate highly efficient C-code.

In ACADO this concept of symbolic representation is employed to define the whole MPC
optimization problem (cf. Figure 8.4). In this example, we define a least squares objective
of the form ∫ T

0

[
ξ(τ)TQξ(τ) + ζ(τ)TRζ(τ)

]
dτ ,

where Q and R are not necessarily unit matrices. The differential equation f in the tutorial
code would in a mathematical notation be given by

ṗ(t) = v(t)

v̇(t) = a(t) (8.3.2)

φ̇(t) = ω(t)

ω̇(t) = −g sin(φ(t))− a(t) cos(φ(t))− bω(t) ,

where ξ = (p, v, φ, ω)T is the state and ζ = a the control. The control bounds have the
form −1 ≤ a(t) ≤ 1.

For a more detailed documentation and for further tutorials on how to specify more general
MPC formulations in ACADO we refer to [245, 91].
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#i n c l u d e <a c a d o t o o l k i t . hpp>

i n t main ( ){

// INTRODUCE THE VARIABLES :
// −−−−−−−−−−−−−−−−−−−−−−−−

D i f f e r e n t i a l S t a t e p ; // se tup f o u r
D i f f e r e n t i a l S t a t e v ; // d i f f e r e n t i a l s t a t e s
D i f f e r e n t i a l S t a t e ph i ;
D i f f e r e n t i a l S t a t e omega ;
C o n t r o l a ; // se tup c o n t r o l i n p u t

D i f f e r e n t i a l E q u a t i o n f ; // se tup an ODE
double T = 3 . 0 ; // l e n g t h o f t ime h o r i z o n

Matr i x Q = eye ( 4 ) ; // w e i g h t i n g mat r i x Q
Matr i x R = eye ( 1 ) ; // w e i g h t i n g mat r i x R

// SETUP THE MPC FORMULATION:
// −−−−−−−−−−−−−−−−−−−−−−−−−−

OCP ocp ( 0 , T ) ; // c o n s t r u c t an o p t i m a l
ocp . minimizeLSQ ( Q, R ) ; // c o n t r o l problem (OCP)

// wi th t r a c k i n g o b j e c t i v e

f << dot ( p ) == v ; // d e f i n e f o u r
f << dot ( v ) == a ; // ODE e q u a t i o n s
f << dot ( p h i ) == omega ;
f << dot ( omega ) == −g∗ s i n ( p h i )−a∗ cos ( p h i )−b∗omega ;

ocp . sub j e c tTo ( f ) ; // s e t model e q u a t i o n s
ocp . sub j e c tTo ( −1 <= a <= 1 ) ; // d e f i n e bounds on

// c o n t r o l i n p u t

// EXPORT TAILORED C−CODE:
// −−−−−−−−−−−−−−−−−−−−−−−

MPCexport mpc( ocp ) ; // c o n s t r u c t module f o r
mpc . exportCode ( ) ; // auto−g e n e r a t i n g code

r e t u r n 0 ;
}

Figure 8.4: A tutorial C++ code for a MPC problem using ACADO.
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Automatic Code Generation

Once a specific model predictive control problem has been set up with ACADO, we can
export the code via the MPCexport class. This module will generate optimized C-code
which is based on hard-coded dimensions and which uses static memory only. There are
four major optimized C-functions generated:

• First, the possibly non-linear right-hand side as well as its derivatives with respect to
the states and controls are exported as C-code. Here, the derivatives are symbolically
simplified employing automatic differentiation tools and using zero-entries in the
Jacobian.

• Second, a tailored Runge-Kutta method for the model equations is generated. This
Runge-Kutta routine also integrates the associated variational differential equations
which are needed to compute the derivatives of the function G. For non-adaptive
step-sizes this is equivalent to automatic differentiation in forward mode.

• Third, a discretization algorithm is exported which organizes the single- or multiple-
shooting evaluation together with the required linear algebra routines for condensing.

• Fourth, the real-time iteration Gauss-Newton method is auto-generated. At this
point, the ACADO Code Generation tool employs a tailored algorithm for solving
dense QPs of the form (8.2.8): either the code generation tool CVXGEN [166] to
export a tailored C-code or an adapted variant of the online QP solver qpOASES [246]
using fixed dimensions and static memory.

In order to illustrate how the exported code looks like, Figure 8.5 shows a snap-shot of an
automatically generated initial value embedding step in plain C. We might still be able
to guess that this piece of code implements a hard coded matrix-vector multiplication
for a system with four states. However, auto-generated code is not designed to be easily
readable but to be efficient and reliable.

Note that the ACADO Code Generation tool generates self-contained code, i.e., no
additional libraries need to be linked. It does not contain any if or switch statements,
i.e., we can completely exclude that the program runs into a part of code which we
have accidentally never tested. Moreover, there are no malloc/free or new/delete
statements in the auto-generated code. All the memory is static and global while the
dimensions are hard-coded, i.e., no segmentation faults can occur. Moreover, we avoid
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[ . . . ]
v o i d i n i t i a l V a l u e E m b e d d i n g ( ){
params . g [ 0 ] = acadoWorkspace . g [ 4 ] +
acadoWorkspace .H[ 4 ] ∗ acadoWorkspace . de l t aY [ 0 ] +
acadoWorkspace .H[ 1 8 ] ∗ acadoWorkspace . de l t aY [ 1 ] +
acadoWorkspace .H[ 3 2 ] ∗ acadoWorkspace . de l t aY [ 2 ] +
acadoWorkspace .H[ 4 6 ] ∗ acadoWorkspace . de l t aY [ 3 ] ;
params . g [ 1 ] = acadoWorkspace . g [ 5 ] +
acadoWorkspace .H[ 5 ] ∗ acadoWorkspace . de l t aY [ 0 ] +
[ . . . ]

Figure 8.5: A snap-shot of automatically generated code: the produced C-code is hard to
read but efficient and reliable.

for-loops whenever reasonable in order to ensure maximum efficiency, though this might
also be done by the compiler.

Finally, the ACADO Code Generation tool offers an option to export code using single
precision arithmetic. This is advantageous for certain hardware platforms but limits the
applicability of the exported code to more well-conditioned problem formulations.

Remarks on Embedded QP Solvers

The ACADO Code Generation tool interfaces two QP solvers based on different
algorithmic strategies:

The first one is a primal-dual interior-point solver which is auto-generated by the package
CVXGEN [166]. The exported algorithm is implemented in highly efficient plain C code
that only makes use of static memory. A major advantage of interior-point algorithms is
their relatively constant calculation times for each occurring QP [46].

Active-set algorithms form a second class of suitable QP solvers, thus also the open-
source package qpOASES [246] – which implements an online active set strategy [89] –
is interfaced. For the ACADO Code Generation tool, a modification using hard-coded
dimensions and static memory is employed. Calculation times of active-set solvers strongly
depend on the number of required active set changes, which is hard to predict. On the
other hand each active set iteration is much faster than an interior-point iteration. In
addition, the availability of dedicated hot-starting procedures are an advantage of active
set methods.
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8.4 The Performance of the Auto-Generated NMPC Algo-
rithm

In order to demonstrate the performance of auto generated NMPC algorithms we apply
the ACADO auto-generation tools to two benchmark problems arising in mechatronics
and chemical engineering. Both examples are tested using online optimization problem
formulations with and without state constraints.

NMPC for a crane model

Let us consider a crane with mass m, line length L, excitation angle φ, and horizontal
trolley position p. Here, our control input is the acceleration a of the trolley. With v being
the trolley velocity and ω being the angular velocity of the mass point, the system can
be described by a simple but non-linear differential equation system of the form (8.3.2),
where b is a positive damping constant. We use the parameters m = 1, L = 1, b = 0.2 as
well as g = 9.81.

Now, we export a nonlinear MPC code using the ACADO Code Generation tool. Our
MPC formulation coincides with the problem (8.2.1), where ξ := (p, v, φ, ω)T is the state
and ζ := a the control while the corresponding right-side function f is given above. The
control bounds are z = −1 and z = 1. Additionally, zero terminal constraints are imposed
at the end of the horizon.

Running the real-time loop leads to a computation time of about 95µs per real-time
iteration (or about 86µs without zero-terminal constraints). This result has been obtained

Table 8.1: Run-time performance of the auto-generated NMPC algorithm applied to the
crane model.

CPU time %
Integration & sensitivities 53 µs 56 %
Condensing 24 µs 25 %
QP solution (with qpOASES) 13 µs 13 %
Remaining operations < 5 µs < 6 %
One complete real-time iteration 95 µs 100 %
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208 AN AUTO-GENERATED REAL-TIME ITERATION ALGORITHM FOR NONLINEAR MPC

on a 2.8 GHz processor with 4 GB RAM by running the real-time iteration loop 104 times
and taking the average. Note that the compiled code for the whole controller has a size
of 160 kB (under Linux) and requires 14 kB for storing problem data and intermediate
results. Table 8.1 shows a more detailed list with the computation times. Here, we have
employed a Runge-Kutta integrator of order 4 using 20 integrator steps which yields an
sufficient integrator accuracy of ≈ 10−3. The time horizon of lenth T = 3 was divided
into 10 control intervals, which determines the dimension of the dense QP.

Note that the time for the feedback step is mainly determined by the time which is needed
to solve the dense QP (8.2.8). Due to the efficiency of the QP solution, the time between
availability of the measurement and the application of the new control is only 13µs. The
code generated by ACADO allows us to perform the preparation step within the remaining
82µs.

NMPC for a Continuous Stirred Tank Reactor

As a second example, we consider a benchmark problem of a continuous stirred tank
reactor (CSTR) with four states and two controls. The corresponding model has been
proposed in [68, 141]. Here, the first two states, cA and cB, are the concentrations of
cyclopentadiene (substance A) and cyclopentenol (substance B), respectively, while the
other two states, ϑ and ϑK , denote the temperature in the reactor and temperature in
the cooling jacket of the tank reactor. The state vector is ξ = ( cA, cB, ϑ, ϑK )T . Our
first input is the feed inflow which is controlled via its scaled rate ζ1 = V̇

VR
, while the

temperature ϑK is held down by an external heat exchanger whose heat removal rate
ζ2 = Q̇K can be controlled as well.
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THE PERFORMANCE OF THE AUTO-GENERATED NMPC ALGORITHM 209

The following nonlinear model can be found in [68, 141]:

ċA(t) = u1(cA0 − cA(t))− k1(ϑ(t))cA(t)− k3(ϑ(t))(cA(t))2

ċB(t) = −u1cB(t) + k1(ϑ(t))cA(t)− k2(ϑ(t))cB(t)

ϑ̇(t) = u1(ϑ0 − ϑ(t)) + kwAR
ρCpVR

(ϑK(t)− ϑ(t))

− 1
ρCp

[
k1(ϑ(t))cA(t)H1 + k2(ϑ(t))cB(t)H2 + k3(ϑ(t))(cA(t))2H3

]

ϑ̇K(t) = 1
mKCPK

(u2 + kwAR(ϑ(t)− ϑK(t))) .

Therein, the reaction rate functions ki are given by

ki(ϑ(t)) = ki0 · exp
(

Ei
ϑ(t) + 273.15˚C

)
with i ∈ { 1, 2, 3 } .

We set up a closed-loop scenario using the above model, where the parameters, control
bounds, and end weights are taken from [68]. For illustration, we chose three different
set points, one of which is constructed such that it can not be tracked exactly due to
over-restrictive state constraints:

ϑ(t) ≥ 98 ◦C , ϑK(t) ≥ 92 ◦C .

The first set point, simulated for t ∈ [0, 3000s] corresponds to the choice in [68]. Moreover,
the closed-loop setup is similar to the one reported in [41, 57] where the main difference is
that we divide the prediction horizon of T = 1500 s into 10 instead of 22 control intervals
of equal length (which was found to hardly affect the control performance).

Figure 8.6 shows the result of the closed-loop simulation using auto-generated code (binary
size of 220 kB and 25 kB for the data). We use a sampling time of 5 s and employ a
Runge-Kutta integrator of order 4 using 20 integrator steps. Running it on the same
hardware as used for the crane example, we obtain the run-times listed in Table 8.2. The
worst measured total run-time for one real-time iteration is about 400µs, which is several
orders of magnitude faster than run-times reported earlier. For example, computation
times in the order of minutes for a very similar setup have been reported fifteen years
ago in [57], while [41, 68] report computation times of about one second (considering the
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210 AN AUTO-GENERATED REAL-TIME ITERATION ALGORITHM FOR NONLINEAR MPC

Figure 8.6: Simulation of a closed-loop scenario for the continuous stirred tank reactor
showing all four states and the two control inputs. The second set-point (dotted and blue)
cannot be reached due to the over-restrictive constraints (dashed and red).
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THE PERFORMANCE OF THE AUTO-GENERATED NMPC ALGORITHM 211

Table 8.2: Worst-case run-time performance of the auto-generated NMPC algorithm
applied to the CSTR model using 10 control intervals with state constraints.

CPU time %
Integration & sensitivities 121 µs 30 %
Condensing 98 µs 24 %
QP solution (with qpOASES)3 180 µs 44 %
Remaining operations < 5 µs < 2 %
A complete real-time iteration 404 µs 100 %

computer hardware used that time, not more than a factor of 10 in the run-time difference
can be explained by the speed-up of PCs). If state constraints are left away, the QP
solution time for our scenario reduces to less than 30µs (and condensing becomes slightly
faster), thus an overall real-time iteration would take not more than 240µs in that case2.

Note that up to 68% (or 45% if no state constraints are present) of the computation time
is spent in the QP solver and the condensing routine, whose computational load grows
cubically with the number of control intervals. Thus, when longer control horizons are
necessary, a tailored sparse QP solver should be used instead.

2Auto-generated code using 22 control intervals and no state constraints would still be very fast taking
less than 1.5 ms per real-time iteration.

3This worst-case runtime corresponds to 21 active set changes required once during transition to the
infeasible set point. Each additional change would require 6.5 µs extra.
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Chapter 9

A Quadratically Convergent Inexact
SQP Method for DAE Systems

This chapter is about an inexact SQP method, which is tailored for large scale optimal
control problems which include differential algebraic equations (DAE). Note that the
corresponding algorithm is not exclusively for robust optimization problems, but rather a
general algorithm for nonlinear optimal control problems which include differential algebraic
equations. This algorithm has been implemented within ACADO Toolkit (cf. Chapter 7)
and tested by optimizing a distillation column with 82 differential and 122 algebraic states.
The algorithm itself together with results of this optimization study are presented here.
Note that this chapter is based on a publication [128] which is currently under review.

9.1 Introduction

For the numerical solution of nonlinear optimal control problems with an underlying
differential algebraic equation (DAE) typically nonlinear programming (NLP) methods
- also called direct approaches - are applied. Here, the DAE is discretized first and the
optimal control problem is transformed into a finite dimensional NLP. Many researchers
have developed collocation methods to discretize the dynamic model [30, 208]. This
allows to discretize the DAE exclusively at the level of the NLP, but leads to extremely
large and sparse optimization problems, while the collocation scheme must be adapted to
control the discretization error. Alternatively, a single shooting approach, as introduced

213
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214 A QUADRATICALLY CONVERGENT INEXACT SQP METHOD FOR DAE SYSTEMS

in [143, 204], or a multiple shooting approach, as introduced in [43, 187], can be applied
to discretize the problem on a moderate number of coarse intervals making use of an
integration routine which adaptively discretizes the DAE in an accurate way within these
coarse intervals.

In this chapter, we concentrate on a particular aspect of direct multiple shooting methods
for DAE: as the differential algebraic equation needs to be simulated subsequently during
the iterations of the NLP algorithm, it is not efficient to compute consistent initializations
in every step of the optimization algorithm. In the simplest form of multiple shooting
methods for DAE [121, 122] this aspect has simply been neglected, leading to more
expensive DAE integration phases, where in every step of the optimization algorithm and
in every multiple shooting node the set of nonlinear consistency conditions must be solved
by Newton’s method. However, in [42] and later in [150] this problem has been overcome
by the introduction of a DAE relaxation allowing to satisfy the consistency conditions only
in the optimal solution. This relaxation function is weakening the algebraic consistency
conditions by introducing slack parameters in such a way that the DAE is always consistent.
Actually, it turns out that the sensitivities with respect to these slack parameters are
only needed in certain directions for the case that partially reduced sequential quadratic
programming (PRSQP) methods are used on the top-level of the optimization as introduced
by Leineweber [150]. However, these methods suffer from the fact that the implementation
of the partially reduced SQP strategy and the sensitivity generation of the DAE are deeply
intertwined, which makes the implementation complicated.

The main contribution of this chapter is divided into two parts: First, a special
parameterized relaxation function for the DAE is suggested. This special relaxation
function is chosen in such a way that the sensitivity directions of the state trajectory
with respect to the relaxation parameters vanish in the optimal solution. And second, an
inexact SQP method is proposed, which uses this property of the new relaxation function
in a systematic way. This inexact SQP method has the interesting property that the
approximations of the Hessian and Jacobian matrices become exact within the optimal
solution. As discussed in [237, 80], general purpose inexact SQP methods can achieve
locally q-superlinear convergence for the case that a suitable update method for the matrix
approximations is applied. However, although the specialized SQP method proposed in
this chapter is also inexact, i.e., the Hessian and the constraint Jacobian in the QPs are
only approximated, the q-quadratic convergence properties can be recovered.

In Section 9.2 we review the direct multiple shooting discretization approach for DAE
optimal control problems and introduce the basic notation as well as the concept of
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DISCRETIZATION OF DAE OPTIMIZATION PROBLEMS 215

relaxation functions. In the next step, we concentrate on a special class of relaxation
functions for DAE systems, which are analyzed in Section 9.3 and for which we can
show desirable properties. These properties are used in Section 9.4, where the inexact
SQP method is constructed. Within this section, we discuss the q-quadratic convergence
properties of the method. In Section 9.5, the new approach is applied and successfully
tested with both: a small-scale toy problem and with a large-scale real-world DAE
optimization problem arising in the context of optimal control of continuous distillation
processes. The latter model, which was validated at a real-world distillation column [68],
includes 122 implicit algebraic as well as 82 differential states.

9.2 Discretization of DAE Optimization Problems

In this section we introduce the following standard formulation of equality constrained
DAE optimization problems:

minimize
x(·),z(·),u(·),p

J [x(·), z(·), u(·), p]

subject to:

∀t ∈ [0,m] : ẋ(t) = f(t, x(t), z(t), u(t), p)
∀t ∈ [0,m] : 0 = g(t, x(t), z(t), u(t), p)

0 = r(x(0), x(T ), p)

(9.2.1)

Here, x : [0,m] → Rnx and z : [0,m] → Rnz denote differential and algebraic states
respectively while u : [0,m] → Rnu is a time dependent control and p ∈ Rnp a time
constant parameter. For ease of notation, we assume that m is a given integer. Note that
this can always be achieved by rescaling the time horizon if necessary. The right-hand side
functions f, g and r are assumed to be twice continuously differentiable in all arguments
and the function g should additionally satisfy that ∂g

∂z is regular, i.e., the DAE is assumed
to have the index 1. Moreover, J denotes an objective functional. Note that for notational
simplicity the above DAE optimal control problem (9.2.1) does not take any inequality
constraints into account. However, the following considerations can easily be generalized
for the case that we have additional inequalities using SQP methods [54, 44].

We are interested in the case that the above DAE optimization problem is discretized
by Bock’s direct multiple shooting approach [43]. This means that we discretize our
control input u on the finite mesh 0 = t0 < t1 < . . . < tm = m with ti = i for all
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216 A QUADRATICALLY CONVERGENT INEXACT SQP METHOD FOR DAE SYSTEMS

i ∈ {0, ...,m} writing the piecewise constant control as ∀t ∈ [i, i+ 1] : u(t) := ui ∈ Rnu
with i ∈ {0, . . . ,m − 1}. The main idea of multiple shooting is to take not only the
discretized control input but also the initial values s0 := x(0), . . . , sm := x(m) at
the nodes into the formulation of the discrete NLP - in contrast to single shooting,
where only s0 is regarded as a free variable. More precisely, we define the functions
X̂0, X̂1, . . . , X̂m−1 : Rnx×Rnu×Rnp → Rnx to be the solutions X̂i(si, ui, p) := x̂i(i+1)
of the given DAE on the multiple shooting intervals (i ∈ {0, . . . ,m− 1}):

d
dt x̂i(t) = f(t, x̂i(t), ẑi(t), ui, p)

0 = g(t, x̂i(t), ẑi(t), ui, p) (9.2.2)

with x̂i(0) = si ,

for all t ∈ [i, i+ 1]. Note that the functions X̂i are well defined on their domains, in the
sense that the solution of the DAE (9.2.2) uniquely exists as we assume that f and g are
twice continuously differentiable and ∂g

∂z regular.1

As the optimal solution for the state x should be continuous, we have to require
matching conditions to be satisfied at the multiple shooting nodes. The initial value
si+1 associated with the i-th interval should in the optimal solution be equal to the end
value X̂i−1(si−1, ui−1, p) of the previous interval. Thus, the matching conditions can be
summarized in the form

Ĥ(α) :=


s1 − X̂0(s0, u0, p)

s2 − X̂1(s1, u1, p)
...

sm − X̂m−1(sm−1, um−1, p)

 = 0 . (9.2.3)

Here, we collect the (m+ 1) initial values at the nodes, the m control input pieces as well
as the free parameters in the variable

α :=
(
sT0 , s

T
1 , . . . , s

T
m, u

T
0 , u

T
1 , . . . u

T
m−1, p

T
)T
∈ Rnα ,

where the dimension nα is given by nα := (m+ 1)nx +mnu + np.
1For a proof of this uniqueness and existence statement we refer to [198].
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In the next step, the objective functional and the boundary constraints must be discretized.
For this aim, we introduce the algebraic node values

β :=
(
βT0 , β

T
1 , . . . , β

T
m

)T
:=

(
z(0)T , z(1)T , . . . , z(m)T

)T
.

These algebraic node values allow us to finally write the discretized version of the optimal
control problem (9.2.1) in the form

minimize
α,β

F (α, β)

subject to: G(α, β) = 0

Ĥ(α) = 0

. (9.2.4)

Here, the algebraic consistency conditions and the discretized boundary constraint have
been summarized in the function G : Rnα × Rnβ → R(m+1)nz+nr which is defined as

G(α, β) :=



g(0, s0, β0, u0, p)
g(1, s1, β1, u1, p)

...
g(m− 1, sm−1, βm−1, um−1, p)

g(m, sm, βm, um−1, p)
r(s0, sm, p)


. (9.2.5)

Finally, the function F : Rnα × Rnβ → R represents the discrete version of the objective
functional J evaluated at the multiple shooting points. In the following we assume that
F is twice continuously differentiable in all its arguments.

Once the discrete optimization problem (9.2.4) is derived, we can of course use a standard
NLP solver - e.g. an SQP method - to solve this structured nonlinear program. As it
was mentioned in the introduction, this strategy has been applied in some approaches of
multiple-shooting for DAE [121, 122]. However, note that the evaluation of the function
Ĥ - or, more precisely, the evaluation of the functions X̂0, . . . , X̂m−1 - is typically the
most expensive part of the algorithm, as it requires to solve m DAEs of the form (9.2.2)
in each step of the SQP algorithm. Numerical integration routines which are able to
numerically solve these DAE systems (9.2.2), usually proceed in two phases: in the first
phase, a consistent algebraic initialization point β∗i ∈ Rnz is generated which satisfies
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218 A QUADRATICALLY CONVERGENT INEXACT SQP METHOD FOR DAE SYSTEMS

‖g(i, si, β∗i , ui, p)‖ ≤ ε, where ε ≥ 0 is a small constant depending on how accurate we
want to solve the DAE. This first phase can for example be performed by a Newton method,
as the Jacobian ∂g

∂z is assumed to be regular. In the second phase, the integration algorithm
is started, which can for example be based on an implicit Runge-Kutta method [114] or
on backward differentiation formula (BDF) methods [15, 61].

However, if we regard optimization methods for DAE, it is usually not efficient to compute
a consistent initialization in every step of the optimization algorithm. The key idea to
avoid this first phase is to first modify the DAE such that it is by definition consistent
and then to simulate the corresponding relaxed differential algebraic equation during
the optimization. This strategy has originally been developed in [42] and was refined
in [150]. Here, relaxation means that the original algebraic condition in (9.2.2) is (for all
i ∈ {1, . . . ,m− 1}) replaced by a modified equation of the form

0 = g(t, xi(t), zi(t), ui, p)− ϑ (γi, t− i) (9.2.6)

for all t ∈ [i, i+ 1], where ϑ : Rnz × [0, 1]→ Rnz is a relaxation function and

γi := g(i, si, βi, ui, p) .

This relaxation function is required to satisfy the conditions

∀γ ∈ Rnz : ϑ(γ, 0) = γ (9.2.7)

∀τ ∈ [0, 1] : ϑ(0, τ) = 0 (9.2.8)

such that equation (9.2.6) is by construction satisfied at t = i. In addition, if the algebraic
consistency condition γi = g(i, si, βi, ui, p) = 0 holds at the i-th shooting node, the
condition (9.2.8) guarantees that the function ϑ vanishes on the corresponding shooting
interval such that the relaxed condition (9.2.6) coincides with the original algebraic
condition.

In [42] the function

ϑ1(γ, τ) := γ for all (γ, τ) ∈ Rnz × [0, 1] (9.2.9)

was chosen as a relaxation function, while in [15] and in [150] it is reported that the
function

ϑ2(γ, τ) := γ exp (−δτ) for all (γ, τ) ∈ Rnz × [0, 1] (9.2.10)
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with the empirical value δ = 5 works better in practice. One of the two main contributions
of this chapter is to suggest a third choice for the function ϑ, which will be defined in
equation (9.3.1). In Sections 9.3 and 9.4 we will discuss the advantages and desirable
properties of this new relaxation function in comparison to the existing choices (9.2.9)
and (9.2.10). However, let us first address the question what the introduction of a
relaxation function changes with regard to the discretization of the continuous optimal
control problem: for this aim, we consider the relaxed differential algebraic equations on
the multiple shooting intervals (i ∈ {0, . . . ,m− 1}):

d
dtxi(t) = f(t, xi(t), zi(t), ui, p)

0 = g(t, xi(t), zi(t), ui, p)− ϑ (γi, t− i) (9.2.11)

with xi(0) = si ,

for all t ∈ [i, i+ 1]. Analogous to the functions X̂0, X̂1, . . . , X̂m−1 we define the functions
X0, X1, . . . , Xm−1 : Rnx × Rnz × Rnu × Rnp → Rnx to be the solutions

Xi(si, γi, ui, p) := xi(i+ 1)

of the relaxed DAE system (9.2.11). Moreover, we define a function H by

H (α,Γ) :=


s1 −X0(s0, γ0, u0, p)
s2 −X1(s1, γ1, u1, p)

...
sm −Xm−1(sm−1, γm−1, um−1, p)

 . (9.2.12)

Here, we us the definition

Γ :=
(
γT0 , γ

T
1 , . . . , γ

T
m−1, γ

T
m, γ

T
r

)T
:= G(α, β) (9.2.13)

as a notation for the components of the function G. Now, the matching conditions for
the relaxed DAE can be summarized as

H(α,G(α, β)) = 0 . (9.2.14)

The associated discretized optimization problem takes the form

minimize
α,β

F (α, β)

subject to: 0 = G(α, β)
0 = H(α,G(α, β))

. (9.2.15)
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Note that the optimization problems (9.2.4) and (9.2.15) are equivalent by construction:

Lemma 9.1: If the relaxation function ϑ satisfies ϑ(0, τ) = 0 for all τ ∈ [0, 1], the
optimization problems (9.2.4) and (9.2.15) are equivalent. I.e., a point (α∗, β∗) is an
optimal point of problem (9.2.4) if and only if it is an optimal point of problem (9.2.15).

Proof: If (α∗, β∗) is a feasible point of one of the optimization problems, it must satisfy
G(α∗, β∗) = 0, i.e., the consistency condition γ∗i = g(ti, s∗i , β∗i , u∗i , p∗) = 0 holds for all
i ∈ {1, . . . ,m− 1}. Thus, the relaxation function ϑ satisfies ϑ(γ∗i , τ) = ϑ(0, τ) = 0 for all
τ ∈ [0, 1], i.e., the relaxation vanishes at an optimal point such that the relaxed and the
original DAE exactly coincide. Consequently, we have Ĥ(·) ≡ H(·, G(α∗, β∗)) ≡ H(·, 0)
and the optimization problems (9.2.4) and (9.2.15) must be equivalent. �

The advantage of the function H in comparison to the function Ĥ is that a single evaluation
is cheaper, as the simulation of the relaxed DAE (9.2.11) does not require a first phase,
in which a consistent initial value is computed. However, the function H does not only
depend on α but implicitly also on the variable β which enters via the variable Γ = G(α, β).
Thus, assuming that H is differentiable, the computation of the Jacobian of H with
respect to Γ can be expensive - especially, if we have many algebraic states. In order to
overcome this problem, it has in [150] been proposed to use partially reduced sequential
quadratic programming (PRSQP) methods to solve the relaxed problem (9.2.15). These
methods have the advantage that only nα+1 directional derivatives of H per SQP step are
needed - in comparison to nα+nβ directional derivatives of H, which would be needed for
a computation of the whole Jacobian needed within the full-space SQP method. However,
PRSQP methods suffer from the fact that the simulation and derivative generation of the
DAE system and the optimization routine itself are deeply intertwined [150], which makes
the implementation complex and less attractive from a programming point of view.

The first contribution of this chapter is the introduction of a novel relaxation function
ϑ defined by equation (9.3.1). The desirable properties (cf. Section 9.3) of this special
relaxation function will allow us to avoid the computation of derivatives of H with respect
to β, i.e., we need only nα derivatives of H per SQP step, while the optimization and
DAE simulation together with the derivative generation can be implemented in a modular
way. In the following sections we will explain this idea step by step.
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Figure 9.1: The function ‖ϑ(γ, τ)‖ in dependence on τ for several values of ‖γ‖ (with
the values ‖γ‖ ∈ {1, 1

2 ,
1
4 , . . . ,

1
256}) for the case a = 1

2 and b = 1.

9.3 Properties of the New Relaxation Function

In this section we are interested in the analysis of the relaxed DAE (9.2.11) under the
assumption that the relaxation function ϑ : Rnz × [0, 1]→ Rnz has the form

ϑ(γ, τ) :=


γ (1− τ)

a+b‖γ‖
‖γ‖ if ‖γ‖ 6= 0

0 otherwise
(9.3.1)

for all (γ, τ) ∈ Rnz × [0, 1]. Here, a > 0 and b ≥ 1 are positive design parameters while
‖·‖ denotes the Euclidean norm.2 In Figure 9.1 the norm ‖ϑ(γ, τ)‖ is plotted as a function
of the variable τ ∈ [0, 1] for several values of ‖γ‖ using the choice a = 1

2 and b = 1.
Lemma 9.2: The relaxation function ϑ, which is defined by equation (9.3.1), has the
following properties:

(i) The function ϑ is continuous on its domain Rnz × [0, 1] and satisfies the
fundamental relations (9.2.7) and (9.2.8).

2In the following, we will use the notation ‖ · ‖ not only for the Euclidean norm on Rnz , but also for
induced matrix or tensor norms.
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(ii) The function ϑ is differentiable with respect to τ and the associated derivative
ϑ̇ := dϑ

dτ satisfies

∀τ ∈ [0, 1] :
∥∥∥ϑ̇(γ, τ)

∥∥∥ ≤ a+ O (‖γ‖) . (9.3.2)

(iii) On the domain (Rnz \ {0})× [0, 1] the function ϑ is twice differentiable with
respect to γ and the associated derivatives ϑ′ := dϑ

dγ and ϑ′′ := d2ϑ
dγ2 satisfy

∫ 1

0

∥∥ϑ′(γ, τ)
∥∥ dτ ≤ O (‖γ‖) ,

∫ 1

0

∥∥ϑ′(γ, τ)
∥∥2 dτ ≤ O (‖γ‖) , (9.3.3)

and
∫ 1

0

∥∥ϑ′′(γ, τ)
∥∥ dτ ≤ O (1)

for all γ ∈ Rnz \ {0}.

Proof: The statement (i) follows immediately from the definition of ϑ. Let us define
the exponent κ by

κ := a+ b‖γ‖
‖γ‖

≥ b ≥ 1 .

We can compute the slope of the function ϑ by direct computation:

∥∥∥ϑ̇(γ, τ)
∥∥∥ =

 (a+ b‖γ‖) (1− τ)κ−1 if ‖γ‖ 6= 0

0 otherwise

 . (9.3.4)

Obviously, we have ∥∥∥ϑ̇(γ, τ)
∥∥∥ ≤ a+ b‖γ‖ = a+ O (‖γ‖) (9.3.5)

for all τ ∈ [0, 1], which shows the statement (ii). Moreover, the differentiability of ϑ on
the domain (Rnz \ {0}) × [0, 1] is a rather trivial consequence of its definition (9.3.1).
Explicitly, ϑ′ can be written as

ϑ′(γ, τ) =
[
1− aγγT log (1− τ)

‖γ‖3

]
(1− τ)κ , (9.3.6)
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where we understand the above right-hand side expression at the point τ = 1 in the limit
sense, which is justified since the inequality κ ≥ 1 guarantees that the limit

lim
t→1

log (1− τ) (1− τ)κ = 0 , (9.3.7)

exists. It is a simple exercise to show that for all integers n ∈ {0, 1, 2} the following
relation holds (for all κ ≥ 1):∫ 1

0
log (1− τ)n (1− τ)κ dτ = (−1)n 1

(1 + κ)n+1 . (9.3.8)

Now, we use formula (9.3.8) once with n = 0 and once with n = 1 to find∫ 1

0
‖ϑ′(γ, τ)‖ dτ =

∫ 1

0

[
1− a

‖γ‖
log (1− τ)

]
(1− τ)κ dτ

= 1
κ+ 1 + a

‖γ‖
1

(κ+ 1)2 ≤
2
a
‖γ‖ . (9.3.9)

Similarly, we compute the integral∫ 1

0
‖ϑ′(γ, τ)‖2 dτ =

∫ 1

0

[
1− a

‖γ‖
log (1− τ)

]2
(1− τ)2κ dτ

= 1
2κ+ 1 + 2 a

‖γ‖
1

(2κ+ 1)2 + a2

‖γ‖2
1

(2κ+ 1)3 ≤
9
8a‖γ‖ ,

where we have used formula (9.3.8) once for n = 0, once for n = 1, and once for n = 2
as well as κ ≥ a

‖γ‖ . Finally, we compute

∫ 1

0
‖ϑ′′(γ, τ)‖ dτ ≤

∫ 1

0

a2

‖γ‖3
log (1− τ)2 (1− τ)κ dτ

−
∫ 1

0

3a
‖γ‖2

log (1− τ) (1− τ)κ dτ

= a2

‖γ‖3
1

(κ+ 1)3 + 3a
‖γ‖2

1
(κ+ 1)2 ≤

4
a
,

which leads to the statement (iii). �
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Remark 9.1: The statement (ii) of the above Lemma is important, as the slope of
ϑ will influence the performance of the numerical integration algorithm applied to the
associated relaxed DAE. Whenever the residual ‖γ‖ is sufficiently small, which means in
our context that the algebraic consistency condition is approximately satisfied, estimate
(9.3.2) guarantees that this slope can directly be influenced by the design parameter a.

Recall that the solutions of the relaxed differential algebraic equations (9.2.11) are denoted
by Xi(si, γi, ui, p). In the following, we analyze these functions Xi in more detail under
the assumption that the relaxation function ϑ satisfies the properties (i) and (iii) of the
above Lemma.

Theorem 9.1: Let i ∈ {0, ...,m− 1}, si, ui, and p be given, the functions f and g twice
continuously differentiable, and ∂g

∂z regular. If the function ϑ satisfies the properties (i)
and (iii) of Lemma 9.2, then the function Xi, which is defined to be the solution of the
DAE system (9.2.11), is differentiable with respect to γi and its Jacobian X ′i := ∂Xi

∂γi
is

locally Lipschitz continuous. Moreover, we have X ′i(si, 0, ui, p) = 0.

Proof: Let us pick a γ ∈ Rnz . For theoretical purposes, we eliminate the algebraic states
of the system (9.2.11) in a neighborhood of γ. More precisely, the implicit function theorem
guarantees the existence of a bounded open neighborhood D ⊂ Rnz with γ ∈ D and a
twice continuously differentiable function h : [i, i+ 1]× Rnx × Rnz × Rnu × Rnp → Rnx
such that the differential state xi satisfies the ODE

∀t ∈ [i, i+ 1] : ẋi(t) = h(t, xi(t), ϑ(γi, t− i), ui(t), p) with xi(i) = si (9.3.10)

for all γi ∈ D. Here we have used the assumption that f and g are twice continuously
differentiable in all arguments, while ∂g

∂z 6= 0 is regular. Note that the differential
equation (9.3.10) can also be written in its integral form

xi(t) = si +
∫ i+1

i
h (τ, xi(τ), ϑ(γi, τ − i), ui(τ), p) dτ (9.3.11)

for all γi ∈ D. Let us define the set D∗ := {γ ∈ D | γ 6= 0}. The property (iii) of
Lemma 9.2 guarantees that the function ϑ is at least on the domain D∗ differentiable
with respect to γi. Consequently, the derivative function x′i := ∂xi

∂γi
exists on D∗ and can
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also be written in its integral form

x′i(t) =
∫ t

i

∂h

∂x
(τ, xi(τ), ϑ(γi, τ − i), ui(τ), p) x′i(τ) dτ

+
∫ t

i

∂h

∂ϑ
(τ, x(τ), ϑ(γi, τ − i), ui(τ), p) ϑ′(γi, τ) dτ

for all γi ∈ D∗ and all t ∈ [i, i+ 1]. As the function h is twice continuously differentiable
and as we have assumed that D is bounded, we can always find local Lipschitz constants
Hx, Hϑ > 0 such that

‖x′i(t)‖ ≤
∫ t

i
Hx‖x′i(τ)‖ dτ + Hϑ

∫ t

i
‖ϑ′(γi, τ)‖ dτ . (9.3.12)

for all γi ∈ D∗. Now, an application of the integral form of Gronwall’s Lemma yields

‖x′i(i+ 1)‖ ≤ Hϑ e
Hx

∫ 1

0
‖ϑ′(γi, τ)‖ dτ , (9.3.13)

i.e., using the property (iii) of Lemma 9.2 leads to the estimate

‖X ′i(si, γi, ui, p)‖ = ‖x′i(i+ 1)‖ ≤ O (‖γi‖) (9.3.14)

for all γi ∈ D∗.

For the case that 0 /∈ D we have D∗ = D, i.e., we know already that X is differentiable
on the set D. Otherwise, i.e., for the case 0 ∈ D, we use equation (9.3.11) in combination
with Gronwall’s Lemma to conclude that there exists a constant C <∞ with

‖Xi(si, γ, ui, p)−Xi(si, 0, ui, p)‖ ≤ C max
τ∈[0,1]

‖ϑ(γ, τ)− ϑ(0, τ)‖

= C max
τ∈[0,1]

‖ϑ(γ, τ)‖ ≤ C‖γ‖ (9.3.15)

for all γ ∈ D. Here, we have used the property (i) of Lemma 9.2, which guarantees that
we have ϑ(0, τ) = 0 for all τ ∈ [0, 1].

Let (γn) ∈ D∗ be a sequence with

lim
n→∞

γn = 0 .

Now, it is guaranteed by the estimates (9.3.14) and (9.3.15) that the function
value sequences Xi(si, γn, ui, p) and X ′i(si, γn, ui, p) converge both uniformly to
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Xi(si, 0, ui, p) ∈ Rnx and 0 ∈ Rnx×nz respectively, if n tends to infinity. Thus,
we can conclude that the function X ′i exists on the whole set D and that we have
X ′i(si, 0, ui, p) = 0. Moreover, as the point γ around which the open set D has been
constructed was arbitrary, we can transfer our statement to the whole domain Rnz , i.e.,
X ′i exists everywhere and we have X ′i(si, 0, ui, p) = 0.

It remains to be shown that the function X ′i is locally Lipschitz continuous. For this aim,
we start again with the integral representation (9.3.11) for γ ∈ D∗. Differentiating twice
with respect to γ, taking the norm, and applying Gronwall’s Lemma shows that there exist
constants C0, C1, C2, C3 <∞ with

‖X ′′i (si, γi, ui, p)‖ ≤ C0 + C1

∫ 1

0
‖ϑ′(γi, τ)‖ dτ + C2

∫ 1

0
‖ϑ′(γi, τ)‖2 dτ

+C3

∫ 1

0
‖ϑ′′(γi, τ)‖ dτ (9.3.16)

for all γ ∈ D∗. Here, X ′′ := ∂2X
∂y2

0
denotes the second derivative of X with respect to y0.

This second derivative exists on D∗ as the second derivative ϑ′′ := ∂2ϑ
∂y2

0
does exist on this

domain. Using the property (iii) from Lemma 9.2, we conclude that there must be a
constant M <∞ such that

∀γi ∈ D∗ : ‖X ′′i (si, γi, ui, p)‖ ≤ M . (9.3.17)

In other words, the derivative X ′′i exists on D∗ and is uniformly bounded on this set. This
means that X ′i is a continuous function on D, whose derivative exists almost everywhere
and is uniformly bounded. Hence, X ′i is locally Lipschitz continuous on D. With the same
argumentation as above, we can continue this statement to the whole Rnz , i.e., X ′i exists
everywhere and is locally Lipschitz continuous. �

Remark 9.2: The properties (i) and (iii) from Lemma 9.2 do not uniquely characterize
the relaxation function ϑ. The above theorem holds for all relaxation functions ϑ which
satisfy these two properties. However, in this chapter we concentrate on the choice
defined in equation (9.3.1) which turned out to work well in practice as it will also later
be discussed in Section 9.5.

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



PROPERTIES OF THE NEW RELAXATION FUNCTION 227

Remark 9.3: For the case that the relaxation function ϑ is defined by equation (9.3.1),
it is worthwhile to discuss that the estimate (9.3.14) has the explicit form

‖X ′i(si, γi, ui, p)‖ ≤
2Hϑ e

Hx

a
‖γi‖ . (9.3.18)

This can be seen by using the estimate (9.3.9). The estimate (9.3.18) gives us an idea on
how the function X ′i behaves with respect to the design parameter a. Indeed, choosing a
very large a will lead to a small norm of X ′i. However, we should also recall that the slope
of the function ϑ at the point t = 0 has in Proposition 9.2 been estimated by∥∥∥ϑ̇(γ, τ)

∥∥∥ ≤ a+ O (‖γ‖) . (9.3.19)

Thus, if we choose a very large a the slope of ϑ can not be guaranteed to be small
anymore, which might lead to small steps taken by a numerical integration routine that is
used to numerically solve the relaxed DAE system (9.2.11) based on an adaptive step size
control.

In the next step, we discuss a generalization of Theorem 9.1 to derivatives of the function
Xi with respect to the variables αi :=

(
sTi , u

T
i , p

T
)T

, which enter the differential algebraic
equation as the initial value, the control input, and the parameter, respectively.
Corollary 9.1: Requiring the same assumptions as in Theorem 9.1 the function Xi,αi :=
∂Xi
∂αi

is differentiable with respect to γi and its Jacobian X ′i,αi := ∂2Xi
∂αi∂γi

is a locally
Lipschitz continuous function. Moreover, we have X ′i,αi(si, 0, ui, p) = 0.

Proof: The proof of this corollary is almost analogous to the proof of Theorem 9.1. We
start again with the integral form (9.3.11) for γi ∈ D∗ and differentiate with respect to γi
and αi:

∂

∂αi
x′i(t) =

∫ t

i

∂h

∂x

∂

∂αi
x′i(τ) dτ +

∫ t

i

[
∂2h

∂x∂αi
+ ∂2h

∂x2
∂xi
∂αi

]
x′i(τ) dτ

+
∫ t

i

[
∂2h

∂ϑ∂αi
+ ∂2h

∂ϑ∂x

∂xi
∂αi

]
ϑ′(γi, τ) dτ (9.3.20)

for all γi ∈ D∗ and all t ∈ [i, i+1]. Thus, as we have ‖x′i(τ)‖ ≤ Hϑe
Hx
∫ τ
i ‖ϑ′(γi, τ ′)‖ dτ ′

for all τ ∈ [i, i+ 1], we can find local Lipschitz constants Hx and Hϑ,α such that∥∥∥∥ ∂

∂αi
x′i(t)

∥∥∥∥ ≤ ∫ t

i
Hx

∥∥∥∥ ∂

∂αi
x′i(t)

∥∥∥∥ dτ + Hϑ,α

∫ t

i
‖ϑ′(γi, τ)‖ dτ .
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Now the integral form of Gronwall’s Lemma yields

‖X ′i,αi(si, γi, ui, p)‖ =
∥∥∥∥ ∂

∂αi
x′i(i+ 1)

∥∥∥∥ ≤ Hϑ,αe
Hx

∫ 1

0
‖ϑ′(γi, τ)‖ dτ ≤ O (‖γi‖) ,

for γi ∈ D∗. For the case 0 ∈ D we use the Lipschitz relation

‖Xi,αi(si, γi, ui, p)−Xi,αi(si, 0, ui, p)‖ ≤ O (‖γi‖) ,

such that we can apply the same argumentation as in Theorem 9.1: for every sequence
(γn) ∈ D∗ with lim

n→∞
γn = 0 the function value sequences Xi,αi(si, γn, ui, p) and

X ′i,αi(si, γ
n, ui, p) converge for n→∞ uniformly to Xi,αi(si, 0, ui, p) and 0 respectively.

Thus, the function Xi,αi is differentiable on D and we have X ′i,αi(si, 0, ui, p) = 0. This
statement can be continued to the whole domain.

It remains to show the local Lipschitz continuity of the function X ′i,αi . Again, the
argumentation is analogous to Theorem 9.1: first, we differentiate the integral form (9.3.20)
once more with respect to γi, take the norm on both sides, apply the integral form of
Gronwall’s Lemma and find the estimate

‖X ′′i,αi(si, γi, ui, p)‖ ≤ Cα,0 + Cα,1

∫ 1

0
‖ϑ′(γi, τ)‖dτ + Cα,2

∫ 1

0
‖ϑ′(γi, τ)‖2 dτ

+Cα,3

∫ 1

0
‖ϑ′′(γi, τ)‖ dτ <∞ (9.3.21)

for some constants Cα,0, Cα,1, Cα,2, Cα,3 < ∞ and for all γi ∈ D∗. Obviously, we can
now apply a completely analogous argumentation as in Theorem 9.1 to show that the
function X ′i,αi is locally Lipschitz continuous. �

9.4 Inexact SQP Methods for DAE Systems

In this section we come back to the question how to numerically solve the discretized
optimization problem (9.2.15) of the form

minimize
α,β

F (α, β)

subject to: 0 = G(α, β)
0 = H(α,G(α, β))

. (9.4.1)
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Recall that F and G are twice continuously differentiable functions, where G is defined by
equation (9.2.5) while F is the discretized objective. The function H has in Section 9.2
been defined within equation (9.2.12).

Proposition 9.1: Let the relaxation function ϑ satisfy the assumptions of Theorem 9.1.
Then the following statements hold:

(i) The function H is totally differentiable with respect to the arguments (α, β)
and the associated total derivative functions

dH
dα := ∂H

∂α
+ ∂H

∂G

∂G

∂α
and dH

dβ := ∂H

∂G

∂G

∂β

are locally Lipschitz continuous. In addition, we have dH
dα (α, 0) = ∂H

∂α (α, 0) as
well as dH

dβ (α, 0) = 0.
(ii) The derivative of H(·, G(·, ·)) with respect to its first argument, denoted by

∂H
∂α , is totally differentiable in (α, β) and the total derivative function d

d(α,β)
∂H
∂α

is locally Lipschitz continuous. In addition, we have d
dα

∂H
∂α (α, 0) = ∂2H

∂α2 (α, 0)
as well as d

dβ
∂H
∂α (α, 0) = 0.

Proof: We use the notation X :=
(
XT

0 , . . . , X
T
m−1

)T
. The derivative of H can now be

reduced to the derivatives of X as we have

dH
dα = ∂H

∂α
+
m−1∑
i=0

∂H

∂γi

dγi
dα = ∂H

∂α
−
m−1∑
i=0

∂X

∂γi

dγi
dα (9.4.2)

as well as

dH
dβ =

m−1∑
i=0

∂H

∂γi

dγi
dβ = −

m−1∑
i=0

∂X

∂γi

dγi
dβ , (9.4.3)

where the existence and local Lipschitz continuity of the derivatives ∂X
∂γi

is for all indices
i ∈ {0, . . . ,m−1} guaranteed by Theorem 9.1. In particular, Theorem 9.1 guarantees that
the derivatives of the form ∂X

∂γi
in equations (9.4.2) and (9.4.3) vanish at every consistent

initialization point, i.e., we have dH
dα (α, 0) = ∂H

∂α (α, 0) as well as dH
dβ (α, 0) = 0 and the

statement (i) is proven.
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In the next step we use Corollary 9.1 to show that also the Lipschitz continuous derivatives

d
dα

∂H

∂α
= ∂2H

∂α2 −
m−1∑
i=0

∂2X

∂α∂γi

dγi
dα (9.4.4)

and d
dβ

∂H

∂α
= −

m−1∑
i=0

∂2X

∂α∂γi

dγi
dβ (9.4.5)

exist. In particular, it follows from Corollary 9.1 that we have d
dα

∂H
∂α (α, 0) = ∂2H

∂α2 (α, 0) as
well as d

dβ
∂H
∂α (α, 0) = 0, which leads to the statement (ii). �

Note that an important consequence of the above proposition is that all functions in the
optimization problem (9.4.1) are continuously differentiable. i.e., we can formulate first
order KKT conditions.

In the following, we regard the optimization problem (9.4.1) independent of our DAE
context. Although we might of course still have relaxed DAEs in mind, we will from
now on only require that the functions F and G are twice continuously differentiable,
while the function H can be any function which satisfies the properties (i) and (ii) of
Proposition 9.1.

Lemma 9.3: Let F and G be continuously differentiable while H satisfies the properties
(i) and (ii) of Proposition 9.1. Let (α, β) be a minimizer of problem (9.4.1) at which the
matrix ( dG

dα (α, β) dG
dβ (α, β)

∂H
∂α (α, 0) 0

)
(9.4.6)

has full rank. Then (α, β) is a KKT point and there exist multipliers λ ∈ RnG and
µ ∈ RnH such that the following conditions are satisfied:

0 = dF
dα (α, β) + λT

dG
dα (α, β) + µT

∂H

∂α
(α,G(α, β)) (9.4.7)

0 = dF
dβ (α, β) + λT

dG
dβ (α, β) (9.4.8)

0 = G(α, β) (9.4.9)

0 = H(α,G(α, β)) . (9.4.10)
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Proof: If the point (α, β) is a minimizer of problem (9.4.1) it must satisfy the feasibility
condition G(α, β) = 0. Consequently, we can use the properties (i) and (ii) of
Proposition 9.1 to conclude that the matrix( dG

dα (α, β) dG
dβ (α, β)

dH
dα (α,G(α, β)) dH

dβ (α,G(α, β))

)
=

( dG
dα (α, β) dG

dβ (α, β)
∂H
∂α (α, 0) 0

)

has full rank, i.e., the linear independence constraint qualification (LICQ) is satisfied at the
minimizer (α, β). Thus, (α, β) is a KKT point. The corresponding first order necessary
conditions are equivalent to the conditions (9.4.7)-(9.4.10). This can be verified by using
the properties (i) and (ii) of Proposition 9.1 again. �

Remark 9.4: An important observation in the above Lemma is that an evaluation of the
KKT conditions (9.4.7)-(9.4.10) does not require the computation of the derivative of H
with respect to β. The algorithm which is proposed in the following will make use of this
observation.

In order to numerically determine a KKT point w := (α, β, λ, µ) satisfying the
conditions (9.4.7)-(9.4.10) we plan to apply a Newton type method. For this aim, we
start at an initial point w0 generating iterates of the form wk+1 := wk +A(wk)−1Φ(wk),
where the function Φ : Rnw → Rnw (with nw := nα + nβ + nG + nH) is defined as

∀w ∈ Rnw : Φ(w) :=


dF
dα (α, β)T + dG

dα (α, β)Tλ+ ∂H
∂α (α,G(α, β))Tµ

dF
dβ (α, β)T + dG

dβ (α, β)Tλ
G(α, β)

H(α,G(α, β))

 , (9.4.11)

while the matrix valued function A : Rnw → Rnw×nw is defined as

A(w) :=

d2L(α,β,λ)
dα2 + ∂2µTH

∂α2 (α,G(α, β)) d2L(α,β,λ)
dαdβ

dG(α,β)
dα

T ∂H
∂α (α,G(α, β))T

d2L(α,β,λ)
dβdα

d2L(α,β,λ)
dβ2

dG(α,β)
dβ

T
0

dG(α,β)
dα

dG(α,β)
dβ 0 0

∂H
∂α (α,G(α, β)) 0 0 0


(9.4.12)
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232 A QUADRATICALLY CONVERGENT INEXACT SQP METHOD FOR DAE SYSTEMS

for all w ∈ RnW , where we use the notation

L(α, β, λ) := F (α, β) + λTG(α, β) .

For the moment, we assume here that the matrix A(w) is always invertible such that the
iterations are well-defined, but we will discuss later in more detail, under which conditions
this can be guaranteed.

Lemma 9.4: Let F and G be twice continuously differentiable while H satisfies the
properties (i) and (ii) of Proposition 9.1. The function Φ is a differentiable function and
its Jacobian Φ′ := ∂Φ

∂w is locally Lipschitz continuous on Rnw . Moreover, for every point
w∗ ∈ Rnw , which satisfies Φ(w∗) = 0 we have Φ′(w∗) = A(w∗).

Proof: The question whether the function Φ is differentiable reduces obviously to the
question whether the derivatives

dH
dβ and d

dβ
∂H

∂α
(9.4.13)

exist. As the existence and local Lipschitz continuity of both terms is guaranteed by the
properties (i) and (ii) of Proposition 9.1, Φ is differentiable and its Jacobian is locally
Lipschitz continuous. Now, we have

Φ′(w∗)−A(w∗) =


0 µT d

dβ
∂H
∂α (α∗, G(α∗, β∗)) 0 0

0 0 0 0
0 0 0 0
0 dH

dβ (α∗, G(α∗, β∗)) 0 0

 = 0 , (9.4.14)

as we have G(α∗, β∗) = 0 at every point w∗ which satisfies Φ(w∗) = 0. �

Remark 9.5: The above Newton type method can of course also be interpreted as an SQP
type method. As this method is neither based on exact Hessians nor on exact constraint
Jacobians it can be regarded as an inexact SQP method. Note that the approximation
of the Hessian and the constraint Jacobian has the advantage that no derivatives of the
function H with respect to β are needed, which is especially beneficial in the case that we
have a large number of algebraic states in the DAE. Moreover, the above SQP formulation
can in an obvious way be transferred to the case that we also have inequalities.
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INEXACT SQP METHODS FOR DAE SYSTEMS 233

The final step of this section is to discuss the local convergence properties of the suggested
inexact SQP method:

Theorem 9.2: Let F and G be twice continuously differentiable while H satisfies
the properties (i) and (ii) of Proposition 9.1. If the discretized DAE optimization
problem (9.4.1) has a strict local minimum at the primal dual KKT point w∗ while A is
a regular function, then there exists an open neighborhood N (w∗) around w∗ ∈ N (w∗)
such that for all initial points w0 ∈ N (w∗) the sequence (wk) converges q-quadratically
to w∗.

Proof: The proof is based on the standard argumentation for Newton methods: Let w∗
be a point which satisfies Φ(w∗) = 0. Now, we have for all k ∈ N

wk+1 − w∗ = wk − w∗ −A(wk)−1Φ(wk)

= wk − w∗ −A(wk)−1
∫ 1

0
Φ′(w∗ + s

(
wk − w∗

)
)
(
wk − w∗

)
ds

= A(wk)−1
∫ 1

0

[
A(wk)− Φ′(w∗ + s

(
wk − w∗

)
)
] (
wk − w∗

)
ds . (9.4.15)

We know from Lemma 9.4 that Φ′ is locally Lipschitz continuous and Φ′(w∗) = A(w∗),
i.e., there exists a constant L <∞ such that for all s ∈ [0, 1] the inequality

‖A(wk)−1
[
A(wk)− Φ′(w∗ + s

(
wk − w∗

)
)
] (
wk − w∗

)
‖ ≤ L ‖wk − w∗‖2

is satisfied. Thus, we find with equation (9.4.15) that

‖wk+1 − w∗‖ ≤ L ‖wk − w∗‖2 (9.4.16)

which shows the q-quadratic convergence of the method and leads immediately to the
statement of the theorem. �

Remark 9.6:

(i) The above theorem assumes that the matrix valued function A is regular. However,
it would also be enough to require that A(w∗) is regular as this implies that there is a
neighborhood of w∗ in which A is regular. Moreover, it can easily be seen that A(w∗)
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234 A QUADRATICALLY CONVERGENT INEXACT SQP METHOD FOR DAE SYSTEMS

must be regular if the original unrelaxed optimization problem (9.2.4) satisfies the
second order sufficient condition for a minimum at w∗ while the constraints satisfy the
linear independence constraint qualification (LICQ). (This follows immediately from
the equivalence relations Ĥ(·) ≡ H(·, β∗), ∂

∂αĤ(·) ≡ Hα(·, β∗), and ∂2

∂α2 Ĥ(·) ≡
Hα.α(·, β∗).)

(ii) The above theorem requires that the functions F and G are twice continuously
differentiable while H satisfies the properties (i) and (ii) of Proposition 9.1. Note
that these requirements are satisfied, if F , the original DAE right-hand side functions
f and g, as well as the constraint function r are twice continuously differentiable
while the relaxation function ϑ satisfies the properties (i) and (iii) of Lemma 9.2.

(iii) Note that the proposed inexact SQP algorithm does not require the computation of
any derivatives of the functions Xi with respect to the algebraic node variables βi.
Hence, the proposed inexact SQP algorithm is beneficial if we have many algebraic
states.

(iv) One of the main advantages of the inexact SQP method which is proposed here is
that it is easy to implement: we can simply take an existing SQP method combining
it with our favorite DAE integrator by replacing the algebraic conditions with the
relaxed version and stacking the consistency conditions to the equality constraints.
At the place where we would usually call the integrator to compute the derivatives of
the differential states with respect to the variables γi, we pretend that we have never
introduced any relaxation ignoring this dependency. The above Theorem guarantees
that this way of dealing with DAEs does not destroy the q-quadratic convergence of
the SQP method.

(v) Note that several variations of the above method are possible: for example, instead
of computing the Hessians exactly, we could replace them by an approximation
based on BFGS updates.

(vi) Finally, we compare the above inexact SQP algorithm with the Partially Reduced
Sequential Quadratic Programming method (PRSQP) for DAEs, developed by
Leineweber [150]. The PRSQP method is an exact SQP method, but the computation
of the state sensitivities and the SQP algorithm are deeply intertwined, such that at
the end only

nx + nu + np + 1

forward directions are needed in every step of the optimization algorithm. The
inexact SQP method proposed here requires the computation of nx+nu+np forward

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



NUMERICAL TEST EXAMPLES 235

derivatives of the state trajectory in every step – i.e., we need 1 direction less, which
is only a minor advantage. The main advantage of the inexact SQP method that is
proposed here, is that it can easily be implemented. In fact, there exist a lot of open
as well as commercial SQP implementations and there is also a number of DAE
integrators available. As the PRSQP method requires a deep intertwining of the
SQP routine and the sensitivity generation, it is not so easily possible to couple or
exchange existing software modules. In contrast, the inexact SQP method proposed
here can deal with existing integrators and SQP methods, as it is explained above.

(vii) Note that the above method can easily be combined with Lifted Newton methods [3]
for the case that we have both many differential and many algebraic states but only
a moderate number of control inputs and parameters.

9.5 Numerical Test Examples

In this section, we address the question whether the proposed inexact SQP method does
also work in practice. In the previous section, we have proven the theoretical properties of
the proposed method summarized in Theorem 9.2, which states that we can expect q-
quadratic convergence of the method. However, we should also ask some critical questions
that have only partially been addressed by our theoretical results: how should we choose
the design parameters a and b associated with the relaxation function ϑ

ϑ(γ, τ) :=


γ (1− τ)

a+b‖γ‖
‖γ‖ if ‖γ‖ 6= 0

0 otherwise
,

which has been defined in equation (9.3.1)? Does the choice of a influence the step size
control of an integration routine? How does the inexact SQP algorithm behave if we
choose a too small? In order to understand the relevance of these questions, recall the
estimate (9.3.18) and (9.3.19). From these estimates we do only know that the Lipschitz
constant of the functions X ′i at a KKT point is small if a is large, while the slope of
the function ϑ with respect to the time t is expected to be small for small a. Intuitively,
we expect that the Lipschitz constant of the functions X ′i will influence the convergence
behavior of the SQP method while the slope of the function ϑ might have an influence on
the step size control of the integration routine.

In order to give at least an empirical answer to these questions we will test the inexact
SQP method by applying it first to a small toy example in order to understand the behavior
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236 A QUADRATICALLY CONVERGENT INEXACT SQP METHOD FOR DAE SYSTEMS

of the method. And second, we apply the method to a large real-world optimal control
problem for a distillation column.

A small toy example

As a simple example for a DAE optimization, we consider the following optimal control
problem

minimize
x(·),z(·),u(·)

∫ 5
0 x(t)2 + 3u(t)2 dt

subject to:

∀t ∈ [0, 5] : ẋ(t) = x(t)
(

1
2x(t)− 1

)
+ u(t) + 1

2z(t)
∀t ∈ [0, 5] : 0 = z(t) + ez(t) + x(t)− 1

0 = x(0)− 1

(9.5.1)

In this example we have only 1 differential and 1 algebraic state. However, the differential
as well as the algebraic equation are nonlinear. For our numerical test, we choose 10
multiple shooting intervals. Moreover, we use the ACADO BDF integrator [131], which is
based on a backward differentiation formula (BDF) combined with a higher order diagonal
implicit Runge-Kutta starter based on the algorithmic ideas in [15]. We also use the
ACADO implementation of multiple shooting SQP methods.

Using the notation from the previous section, we start the Newton- or SQP method with
w0 = 0, i.e., all states and controls are simply initialized with 0. As a stopping criterion
we require the KKT tolerance to be less than 10−6. Now, we use a = 1

2 and b = 1 within
the relaxation function (9.3.1). For this these settings, the inexact SQP method converges
rapidly within 8 iterations:

The corresponding minimum value of the objective is 0.49581. Here, it should be remarked
that we did not use any globalization technique, i.e., the full-step method was convergent
in the above example, although the starting guess w0 = 0 is actually quite far from the
optimal solution. For the case that the method is not convergent in full-step mode it is
e.g. possible to apply trust region methods. However, such globalization techniques for
inexact SQP methods are not in the scope of this chapter and we refer to [234] for further
reading.
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k 1 2 3 . . . 7 8
KKT-Tol: 3.67 · 100 3.46 · 10−1 6.00 · 10−2 . . . 1.79 · 10−4 7.59 · 10−7

Figure 9.2: The KKT tolerance associated with the iterations wk+1 = wk−A(wk)−1Φ(wk)
of the inexact SQP method applied to the DAE optimal control problem (9.5.1).

We are interested in a discussion on how the method behaves with regard to the design
parameter a in the relaxation function. Thus, we test the inexact SQP method for several
values of a:

In Table 9.5 the total CPU time of the inexact SQP iterations until convergence is listed.
This CPU time is in our example dominated by the time that is needed for the simulation
of the DAE as well as for first and second order sensitivity generation, while the solution
of the sub-QPs takes usually less than 1 ms. If we choose a too large, the slope (9.3.19)
of the relaxation is too high such that the BDF integration routine takes many steps at
the start of each interval, which is equivalent to a phase 1 step satisfying the algebraic
consistency conditions first before the step size can be increased. However, as soon as we
choose a less than 10, we observe that the overall CPU time improves, while we need the
same number of SQP iterations. The CPU time achieves its minimum if we choose for a
approximately 0.5. If we reduce a further, the approximations of the Jacobian and the
Hessian become less accurate such the CPU time increases again - due to the fact that
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a # SQP iterations total CPU time
50 7 204 ms
10 7 203 ms
5 7 181 ms
1 7 155 ms

0.5 8 137 ms
0.1 10 149 ms
0.05 11 170 ms

0 12 181 ms

Table 9.1: The number of SQP iterations and the associated total CPU time of the inexact
SQP method for several values of the design parameter a.

we need more SQP iterations. It is interesting to observe that even for a = 0 the method
is still convergent. In fact, even if we choose a too small the method is still faster than an
exact SQP method, which uses an expensive phase 1 step in the integration routine (here
realized via a large relaxation parameter a).

Optimal control of a distillation column

In this section we consider a DAE model for a distillation column taken from the
literature [68]. This DAE model has 82 differential states, 122 algebraic states as well as
2 time dependent control inputs. We will not restate all the equations that are needed
to build up the model of the distillation column, but we just mention that the first 42
differential states represent molar Methanol concentrations in the reboiler and condenser
of the distillation column while the remaining 40 differential states are the molar tray
holdups. The liquid and vapor molar fluxes (40 each) together with the 42 temperatures
of reboiler, the 40 trays, and the condenser are the algebraic state vector, i.e., we have
nz = 40 + 40 + 42 = 122 algebraic states. However, for the details of the model we refer
to [68]. The optimal control problem of our interest is also taken from [68]. We consider
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a least square problem of the form

minimize
x(·),z(·),u(·)

∫ T
0

∥∥∥∥∼Tz(t)− Tref

∥∥∥∥2
+ ‖R (u(t)− uS)‖2 dt

subject to:

∀t ∈ [0, T ] : ẋ(t) = f(t, x(t), z(t), u(t))
∀t ∈ [0, T ] : 0 = g(t, x(t), z(t), u(t))

x(0) = x0

, (9.5.2)

where Tref is the reference temperature, at which we would like to operate the system,
∼
T

a projection matrix which filters the temperatures out of the algebraic state vector that
we would like to penalize, uS a control set-point, and x0 a given initial state (e.g. from a
measurement). Note that this problem is exactly coinciding with the optimization problem
(7.22) in [68]. Here, we chose T = 1000 s to be the time horizon while the 6 multiple
shooting discretization intervals are also chosen as suggested in [68].

We employ the same numerical settings as for the toy example from the previous section, i.e.,
we use the ACADO toolkit BDF integrator and multiple-shooting SQP implementation [131]
to implement the inexact SQP method for the distillation column problem (9.5.2). The
problem turns out to be only mildly nonlinear, such that the method converges for a = 0.5
in 5 iterations, which corresponds to approximately 30 s of computation time:

k 1 2 3 4 5
KKT-Tol: 2.252 · 100 4.230 · 10−1 7.34 · 10−3 2.32 · 10−5 1.52 · 10−9

Table 9.2: The KKT tolerance associated with the iterations of the inexact SQP method
applied to a real-world optimal control problem with 82 differential and 122 algebraic
states.

In this example the choice of the parameter a did not influence the number of SQP
iterations, i.e., we need always 5 SQP iterations. However, for a = 0.5 or smaller values of
a the BDF integration routine needs approximately 119 integrator steps per simulation and
interval while values a� 1 lead to approximately 145 steps, i.e., we save approximately
20% of computation time in comparison to an exact SQP method with phase 1 step.
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240 A QUADRATICALLY CONVERGENT INEXACT SQP METHOD FOR DAE SYSTEMS

Summarizing our observations, the inexact SQP algorithm proposed in this chapter is
surprisingly robust with respect to the choice of the design parameter a. Choosing a close
to 0.5 turned out to lead to significant savings in terms of computation time.

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



Chapter 10

Approximate Robust Optimization
of a Biochemical Process

In this chapter we present techniques to optimize open-loop stable periodic stationary states
of processes that depend on uncertain parameters. We start by recalling approximate
robust counterpart formulations but specialize on automatic backward differentiation
strategies which are especially beneficial for systems with many uncertain parameters and
a small number of inequality constraints. The presented approximate robust programming
formulation has an interesting application for stable time-periodic systems where the steady
state is affected by uncertainties. In order to demonstrate this, we apply our techniques to
a fermentation process optimal in a periodic operation. We discuss this optimal periodic
solution and robustify it with respect to unknown model parameters. Note that this
chapter is based on joint work with Dr. Filip Logist. The corresponding paper appeared in
the proceeding of the 48th Conference on Decision and Control [133].

10.1 Introduction

In this chapter we focus on uncertain dynamic systems where we have on the one hand
a large number of uncertain parameters but on the other hand only a small number
of inequality constraints that should robustly be satisfied. For this aim, we start in
Section 10.2 with an introduction of the basic notation which is needed for robust
counterpart formulations for the case that the uncertainty enters via an implicit equation.

241
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242 APPROXIMATE ROBUST OPTIMIZATION OF A BIOCHEMICAL PROCESS

Moreover, in Section 10.3, we transfer this formulation and some ideas, which have
originally been proposed in [71], to uncertain stable periodic systems where a periodic
stationary state has to be optimized. This periodic stationary state is in our consideration
depending on both open-loop control inputs and unknown time-invariant parameters.
Thus, we are interested in a robust optimization of the cyclic stationary state.

In Section 10.4 we introduce the model of a biochemical fermentation process. We discuss
optimal periodic operation modes for this model which can be realized by an application of
a time-varying open-loop control input as the system turns out to be asymptotically stable.
Here, the average productivity is maximized for a given average amount of substrate feed
input. In Section 10.5 we show that this nominally optimal solution needs to be refined if
the parameters are not exactly known. The optimal robustified solution for the periodic
operation requires a significantly different control input in order to guarantee robustness
with respect to the uncertainties.

10.2 Approximate Robust Optimization with Implicit Depen-
dencies

Let us consider an uncertain nonlinear optimization problem of the form

min
x∈Rnx ,u∈Rnu

F0(x, u)

subject to G(x, u, w) = 0 (10.2.1)

Fi(x, u) ≤ 0 for all i ∈ {1, . . . , n}

with continuously differentiable functions

F0, F1, . . . , Fn : Rnx × Rnu → R

depending on an optimization variable u ∈ Rnu . Here, we assume that the variable x is
implicitly defined by the continuously differentiable equality constraint

G : Rnx × Rnu × Rnw → Rnx ,

where the partial derivative function ∂G
∂x is assumed to be regular on its domain. This

requirement ensures that x can at least locally be eliminated from the optimization problem
such that the components of u are the remaining degrees of freedom for the optimization.
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In the following we regard the case that G does not only depend on x and u but also on
an uncertain parameter w ∈W ⊂ Rnw lying in an uncertainty set W which has ellipsoidal
form

W :=
{
w ∈ Rnw | (w − w)TΣ−1(w − w) ≤ 1

}
. (10.2.2)

where Σ ∈ Rnw×nw is a positive definite scaling matrix and w ∈ Rnw a constant. However,
for the theoretical part, we will assume that we have Σ = 1 and w = 0 which can always
be achieved by shifting and rescaling the uncertainty w. Note that in our notation the
functions F0, F1, . . . , Fn are not allowed to explicitly depend on w, which is however not
a restriction as such a dependence can always be eliminated by a suitable definition of x
and G. Note that the only difference to notation in previous chapters of this thesis is that
x is implicitly defined by an equality constraint.

In order to incorporate the uncertainty into the optimization problem, we formulate
the associated robust counterpart which is again analogous to previous chapters. More
precisely, we assume that whatever u the optimizer chooses, the adverse player “nature”
chooses the worst possible value Vi(u) defined by

Vi(u) := max
w,x

Fi(x, u) s.t.
{
G(x, u, w) = 0

w ∈W . (10.2.3)

Our aim is now to solve the associated worst-case minimization problem

min
u∈Rnu

V0(u)

subject to Vi(u) ≤ 0 for all i ∈ {1, . . . , n} . (10.2.4)

In this chapter, we do not aim at a rigorous robustification strategy which has been
introduced in Chapter 3. Rather, we employ the approximate strategies from [71, 123, 174],
where it has been suggested to replace the functions Vi(u) by approximations

∼
V i(x, u) (for

all i ∈ {1, . . . , n}) which are obtained by a linearization technique without taking higher
order terms into account. For this aim, the functions G and Fi are for all i ∈ {1, . . . , n}
linearized around a reference x ∈ Rnx satisfying

G(x, u, 0) = 0 .
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Now the approximation
∼
V i(x, u) is defined by

∼
V i(x, u) := max

wi,ξi
Fi(x, u) + ∂Fi(x, u)

∂x
ξi

s.t.


∂G(x,u,0)

∂x ξi + ∂G(x,u,0)
∂w wi = 0
wTi wi ≤ 1

= Fi(x, u) +
∥∥∥∥∥∂Fi∂x

(
∂G

∂x

)−1 ∂G

∂w

∥∥∥∥∥
2
, (10.2.5)

where ‖ · ‖2 denotes the Euclidean norm. For the last transformation we have explictly
solved the linearized maximization problem. In [71] several approaches have been presented
on how to numerically deal with the appearance of the inverse

(
∂G
∂x

)−1
and in [19, 20]

the above explicit solution is discussed under the more general assumption that W is an
intersection of a finite number of ellipsoids.

However, we like to specialize on the computation of the derivatives in equation (10.2.5)
for the case that n is small, i.e., we have only very few uncertain constraints while the
number nw of uncertain parameters might be very large. In this case it is advisable to use
automatic differentiation in the adjoint mode to evaluate the margin terms of the form∥∥∥∥∥∂Fi∂x

(
∂G

∂x

)−1 ∂G

∂w

∥∥∥∥∥
2

=
∥∥∥∥µTi ∂G∂w

∥∥∥∥
2

(10.2.6)

(for i ∈ {0, . . . , n}), where the backward (or adjoint) seed parameters µ0, . . . , µn ∈ Rnx
are well-defined by linear equations of the form

µTi
∂G

∂x
= ∂Fi

∂x
. (10.2.7)
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Summarizing µ := (µ0, . . . , µn) ∈ Rnx×(n+1) we can formulate the approximate robust
counterpart problem in the form

min
x,u,µ

F0(x, u) +
∥∥∥∥µT0 ∂G∂w

∥∥∥∥
2

s.t. G(x, u, 0) = 0

Fi(x, u) +
∥∥∥∥µTi ∂G∂w

∥∥∥∥
2
≤ 0 f. a. i ∈ {1, . . . , n}

µT
∂G

∂x
− ∂F

∂x
= 0 . (10.2.8)

In this general form, the above nonlinear optimization problem can be interpreted as
a nonlinear second order cone program (SOCP). However, we should be aware of the
fact that we consider only a linear approximation here, i.e., for the case that e.g. ∂G

∂w is
vanishing in the optimal solution, our approximation is obviously too optimistic as higher
order terms might dominate the linear approximation even for small uncertainties - this
is a known general drawback of linear approximation techniques. On the other hand, if
the terms of the form µTi

∂G
∂w are for all i ∈ {0, . . . , n} not equal to zero we can at least

guarantee that the approximation is valid for sufficiently small uncertainty sets W . In this
case the norms in the above formulation are also differentiable in a neighborhood of the
optimal solution.

10.3 Robustified Optimal Control for Periodic Processes

In this section we apply the considerations from the previous section for the case that
we like to optimize the stationary state of a stable time periodic dynamic system. Let
y : R→ Rny be the differential state of the system

∀t ∈ [0,∞) : ẏ(t) = g(y(t), v(t), w)

y(0) = y0 (10.3.1)

where v : R→ Rnu is a time dependent but periodic control input satisfying v(t) = v(t+T )
for a cycle duration T > 0 and w ∈ Rnw a time-constant but unknown parameter.

Now we assume that we have the additional knowledge about the system that the state y
converges (independent of the initialization y0) for t→∞ to a time-periodic limit cycle
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z : R→ Rny satisfying

∀t ∈ [0, T ] : ż(t) = g(z(t), v(t), w)

z(0) = z(T ) . (10.3.2)

We are now interested in the behavior of this limit cycle in dependence on the periodic
open-loop control input v but also on the uncertain parameter w.

In order to transfer the ideas from the previous section, we consider an uncertain periodic
optimal control problem of the following form:

minimize
z(·),v(·)

f0(z(T ))

subject to:

∀t ∈ [0, T ] : ż(t) = g(z(t), v(t), w)
∀i ∈ {1, . . . , n} : 0 ≥ fi(z(T ))

z(0) = z(T )

(10.3.3)

To discretize this problem we replace the function v by a piecewise constant approximation

∼
v(t) :=

N−1∑
i=0

uiI[ti,ti+1](t) ,

where I[a,b](t) is equal to 1 if t ∈ [a, b] and equal to 0 otherwise. The time sequence
0 = t0 < t1 < . . . < tN = T can e.g. be equidistant. In the following we summarize

u :=
(
uT0 , . . . , u

T
N−1

)T
to achieve a convenient notation.

In the next step, we regard z(T ) = Z(u,w, x) as a function depending on the control
input u, the uncertain parameter w, as well as the initial value z(0) = x. In other words,
Z is the solution operator of the differential equation, which can numerically be evaluated
by using an integrator.

As we have x = z(0) = z(T ) we define Fi(x) := fi(z(T )) for all i ∈ {0, . . . , n}. Finally,
the periodic boundary condition can be written as

G(x, u, w) := Z(u,w, x)− x = 0 . (10.3.4)
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Obviously, the functions F0, . . . , Fn and G are now defined in such a way that the
discretized version of problem (10.3.3) takes the form (10.2.1). Thus, also the associated
robust counterpart formulation (10.2.8) transfers immediately.

Note that for the computation of the terms µT ∂G∂x and µT ∂G∂w automatic differentiation in
backward mode can be used:

µT
(
∂G

∂x
,
∂G

∂w

)
= µT

∂Z

∂(x,w)(u,w, x)− µT ( I , 0 ) (10.3.5)

For the numerical evaluation of this expression we can use an integrator which is able
to store intermediate values during the forward evaluation of Z such that the associated
adjoint variational equation can later be solved by a backward run. However, for the
details of adjoint differentiation for differential equations we refer the reader to [2].

10.4 Periodic Optimal Control of a Biochemical Process

In this section we apply the approximate robust formulation of periodic optimal control
problems to a biochemical process. More precisely, we consider the following model of
continuous culture fermentation which is often used in the literature [1, 185, 202]:

Ẋ(t) = −DX(t) + µ(t)X(t)

Ṡ(t) = D(Sf(t)− S(t))− µ(t)X(t)
Yx/s

(10.4.1)

Ṗ (t) = −DP + (αµ(t) + β)X(t)

This model consists of 3 states: here, X denotes the biomass concentration, S the
substrate concentration, and P the product concentration of a continuous fermentation
process. Furthermore, the process can be controlled by the input Sf : R→ R representing
the feed substrate concentration. While the dilution rate D, the biomass yield Yx/s, and
the product yield parameters α and β are assumed to be constant and thus independent
of the actual operating condition, the specific growth rate µ : R→ R of the biomass is a
function of the states:

µ(t) = µm

(
1− P (t)

Pm

)
S(t)

Km + S(t) + S(t)2

Ki

(10.4.2)
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This specific growth rate equation is constructed to allow a description of both the product
and the substrate inhibition. For the product an associated saturation constant Pm has
been introduced while Km denotes a saturation constant associated with the substrate.
The constant Ki is the substrate inhibition constant and µm can be interpreted as the
maximum specific growth rate.

In the next step we consider the following optimal control task for our fermentation model:
our aim is to maximize the average productivity

Q := 1
T

∫ T

0
DP (τ) dτ

for a given amount of substrate Sf. It has already been suggested in [185, 202] that
this aim can efficiently be achieved by operating the system in a periodic mode. The
corresponding optimal control problem takes the form

min
z(·),Sf(·)

1
T

∫ T
0 DP (τ) dτ

subject to:

∀t ∈ [0, T ] : ż(t) = g(z(t), Sf(t), w)
1
T

∫ T
0 Sf(τ) dτ = Sf

z(0) = z(T )
Ẋ(0) = 0

∀t ∈ [0, T ] : Smin
f ≤ Sf(t) ≤ Smax

f
1
T

∫ T
0 X(τ) dτ ≤ Xmax

. (10.4.3)

Here, we have summarized the states into one differential state vector z : R→ R3 given
by

z := (X,S, P )T

while the corresponding right-hand side of the differential equation (10.4.1) has been
denoted by g. Moreover, the parameters are summarized in a vector w ∈ R8 given by

w :=
(
D,Ki,Km, Pm, Yx/s, α, β, µm

)T
, (10.4.4)

while the corresponding nominal values for w, which are used in this section, are listed in
Table 10.1.
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Figure 10.1: Left: A locally optimal result for the three states of the optimal control
problem (10.4.3). Right: The approximately robust optimal periodic result for the three
states together with the optimized control input.
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Table 10.1: Nominal fermentation process parameters

Name Symbol Value
dilution rate D 0.15 h−1

substrate inhibition constant Ki 22 g
L

substrate saturation constant Km 1.2 g
L

product saturation constant Pm 50 g
L

yield of the biomass Yx/s 0.4
first product yield constant α 2.2
second product yield constant β 0.2 h−1

specific growth rate scale µm 0.48 h−1

average feed substrate Sf 32.9 g
L

minimum feed substrate Smin
f 28.7 g

L
maximum feed substrate Smax

f 40.0 g
L

maximum average biomass concentration X
max 5.8 g

L

Note that the optimization problem (10.4.3) additionally regards a maximum and a
minimum bound (Smin

f and Smax
f ) on the input Sf as well as a constraint on the

maximum average of the biomass concentration X := 1
T

∫ T
0 X(τ) dτ over one periodic

cycle. Moreover, the equation d
dtX(0) = 0 has been introduced to remove the

indefiniteness with regard to phase shifts. For the numerical solution of the periodic
optimal control problem (10.4.3) we use the single shooting method with a piecewise
constant parameterization (here 30 pieces) of the control input in combination with an
Sequential Quadratic Programming (SQP) algorithm which has been implemented in
the automatic control and dynamic optimization software ACADO (cf. Chapter 7). A
corresponding locally optimal solution is shown in the left part of Figure 10.1.

It can be seen that the optimal result shows indeed a periodic behavior. In this example
the time horizon was fixed to T = 48 h. The result for the objective in the optimal solution,
which is shown in the left part of Figure 10.1, is given by

1
T

∫ T

0
DP (τ) dτ = 3.11 g

L h . (10.4.5)

This value for the objective is clearly larger than the average productivity of 3.00 g
L h which

would be obtained in a time-constant steady state operation mode.
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Moreover, the periodic process is open-loop stable as the spectral radius ρ of the monodromy
matrix associated with the periodic process is ρ ≈ 0.003 < 1 in the optimal solution.
I.e., it is possible to start the fermentation process close to the shown periodic solution
applying the optimal control Sf (t) blindly without needing any feedback. This is not
surprising as this is clearly what we would expect from such a process - independent of the
specific control. Finally, we observe that the inequality constraint on the average biomass
concentration

1
T

∫ T

0
DX(τ) dτ = 5.73 g

L ≤ 5.8 g
L (10.4.6)

is not active in the optimal solution. In contrast to that, the inequality constraints for
the input are almost all active: the optimal solution for Sf shows partially a bang-bang
structure.

In the first phase, where the feed substrate is close or equal to the upper bound, we
observe a substrate accumulation while the biomass concentration as well as the product
concentration decrease. In the second phase, where the lower bound for the input is active,
a growth of the biomass and, with a small delay, a growth of the product concentration
can be seen.

10.5 Robust Optimization of a Biochemical Process

In the next step we are interested in the question what happens if the eight parameters
stacked in the vector w are not exactly known but bounded by an ellipsoidal set W given
by equation 10.2.2. Here, we choose a diagonal scaling matrix Σ ∈ R8×8, whose diagonal
elements are given as:

Σi,i :=
∣∣∣∣ 1
20wi

∣∣∣∣2 (10.5.1)

i.e., we regard 5% of uncertainty for each parameter. For the nominal parameter w ∈ R8

we use the values from Table 10.1.

Now, we can solve the robustified optimal control problem of the form (10.2.8) which is
associated with the periodic optimal control problem (10.4.3) from the previous section.
Note that only one inequality constraint as well as the objective needs to be robustified
in this example as the inequality bounds on the control input Sf are not affected by the
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uncertainty. As we have eight uncertain parameters we are exactly in the situation where
the adjoint mode of automatic differentiation is beneficial.

We use again the ACADO toolkit (cf. Chapter 7) to solve the robustified problem. For
the integration an explicit Runge-Kutta integrator of order 7 (with step-size control of
order 8) has been used to discretize the dynamic system. This integrator coming with
ACADO toolkit is also suitable to compute first and second order derivatives in forward and
backward mode with high accuracies. The corresponding numerical optimization results
for the robustified problem are shown in the right part of Figure 10.1. In comparison to the
nominal results, the biomass concentration X is, due to the robustified constraint, lower
but shows still some cyclic behavior. The substrate concentration S as well as the product
concentration P have in the robust solution a smaller amplitude. Finally, for Sf there are
no active constraints anymore, but the solution shows still phases of accumulation.

The price that needs to be paid for the robustification can be discussed by an evaluation
of the nominal average productivity in the optimal robustified solution:

Q∗ ≈ 1
T

∫ T

0
DP (τ) dτ = 2.98 g

L h . (10.5.2)

Comparing this result with the nominal result from equation (10.4.5) we find that we need
to pay approximately 4− 5% of productivity if we regard the nominal amounts. Finally,
we write the result for the robustified objective in the form

Q ≈ (2.98± 0.19) g
L h , (10.5.3)

where the size of the worst case interval is given by the linear approximation ‖dQ
dwΣ

1
2 ‖2 ≈

0.19 g
L h .

The main reason for the fact that the robustified optimal solution is, compared with the
results from the previous section, significantly different, is that we have to keep a certain
security distance with respect to the inequality constraint if the parameters are uncertain.
Indeed, the inequality constraint of the form

X +
∥∥∥∥∥dX

dw Σ
1
2

∥∥∥∥∥
2
≤ 5.8 g

L (10.5.4)

was active in our example.

Finally, we note that in this small example the computation times are not critical: with
the adjoint sensitivity generation the computations took approximately 2.0 ms per SQP
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iteration, if we use a modern Desktop PC (Intel Pentium, 1.5GHz). In most situations,
between 3 and 10 SQP iterations were necessary until an accuracy in the order of 10−6

is achieved depending on how close the initialization of the algorithm is to the optimal
solution. Just to check that the adjoint mode is not only from a theoretical point of view
advisable in our example we have also computed the sensitivities by using the forward mode
of automatic differentiation, of course obtaining the same solution, but with the forward
mode we need approximately 6.8 ms per SQP iteration. The reason for this difference in
the computation times is that nw = 8 forward directions need to be computed in contrast
to only n+ 1 = 2 backward directions that were needed for an evaluation of the model
using the adjoint formulation. In any case, these computation times for our small example
show that the method has a large potential to be scaled up for larger dynamic systems
that are, e.g., arising in the field of chemical and biochemical engineering.
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Chapter 11

Conclusions

This thesis led to three main contributions: first, we have developed formulations and
algorithms which can deal with nonlinear min-max problems arising in the context of general
robust optimization problems. Second, we have contributed with numerical techniques
which can compute conservative estimates for the influence of uncertainty on nonlinear
dynamic system. Here, numerical strategies for robust optimal control problems as well
as stability optimization methods for periodic systems have been investigated. The third
contribution is the implementation of optimal control algorithms within the freely available
open-source software ACADO, which has successfully been tested with various numerical
examples from the field of optimal control, model predictive control, optimization of
differential algebraic equations, and robust optimization.

11.1 An Interpretation of the Developed Robust Optimiza-
tion Methods

This thesis has introduced worst-case formulations and numerical solution strategies for
optimization and control problems which are affected by unpredictable external disturbances,
model errors, and other uncertainties. Recall that these numerical techniques were always
based on the assumption that we succeed in modeling both: the system or the dynamic
process of our interest as well as our knowledge about the uncertainties which are affecting
it. However, in this thesis we have also learned that even if we succeed in finding a proper
model for the process and the uncertainties, there is another challenge to be taken into

255
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256 CONCLUSIONS

account: only for a small class of non-convex min-max optimization problems we know
efficient numerical algorithms which are able to solve the problem globally and with a high
numerical accuracy. This makes the modeling of uncertain systems challenging: on the one
hand, we have to take care about a realistic mathematical representation of the real-world
process and, on the other hand, we have to keep an eye on the numerical tractability of
the corresponding robust optimization problem.

An important point, which has extensively been discussed in this thesis, is that if a
non-convex robust optimization problem is not tractable in its exact version, it might
nevertheless be solvable in a conservative approximation. Thus, if we want to model
uncertain systems and successfully apply robust optimization techniques in practice, we
have to be aware of the whole range of possibilities to employ trade-offs between numerical
accuracy and computational tractability. At this point, the contribution of this thesis can
be integrated and summarized as follows: we have developed formulations, new algorithms,
and tools which have been designed for solving non-convex min-max optimization and
min-max optimal control problems either exactly if this is possible with a reasonable
amount of computation power or approximately – yet with mathematical guarantees –
by exploiting suitable conservative approximations. In this sense, the contribution of this
thesis has led to an extension of the scope and practical applicability of robust optimization
in general.

A Review of Part I

Looking back at Chapter 2, ellipsoids have been found to be an important candidate for
modeling uncertainty sets. Here, the use of ellipsoids or more general quadratic forms has
been motivated in Section 2.2 where the S-procedure has been reviewed as a useful tool in
convex robust optimization. Already at this early stage in the thesis, we encountered the
outlined trade-off between accurate modeling and computational tractability: Theorem 2.1
states that the reformulation based on the S-procedure is exact if the uncertainty set
is modeled by a single ellipsoid. However, for the case that we want to represent the
uncertainty set more accurately, for example as an intersection of many ellipsoids, the
corresponding Lagrangian based reformulation leads in general to a duality gap. Note that
the review of existing techniques in Chapter 2 must be interpreted as a foundation for the
more advanced Lagrangian based dual reformulation strategies in following chapters in
Part I. In addition, the ellipsoid based set approximation strategies from Section 2.3 turned
out to be the foundation for many of the computational techniques in Part II. Here, we
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have in particular the results on the inner and outer approximations of sums of ellipsoids
from Theorem 2.4 and 2.6 in mind.

Concerning the developments in Chapter 3, a general class of non-convex min-max
problems has been considered. This is extending our possibilities for modeling uncertain
systems. However, in contrast to the exact convexity based reformulation techniques
from Chapter 2, the focus was rather on conservative approximations. In this context,
an important observation was formulated in Lemma 3.2 where it has been shown that
the proposed Lagrangian based dual reformulation strategy can in general be expected to
yield better results than existing Taylor expansion based linearization strategies. Moreover,
in Theorem 3.1 we have derived an upper bound on the duality gap, i.e., the level of
conservatism which is introduced by reformulating the lower level maximization problems.
This is an important result as it helps us to assess whether our overestimate of the impact
of the uncertainties can be expected to be sufficiently accurate. In the Sections 3.3 and 3.4
of Chapter 3, we have discussed existing first and second order optimality conditions for
nonlinear min-max problems as well as the relation to mathematical programming with
complementarity constraints. This can be interpreted as a technical preliminary step which
is needed to understand the structures in semi-infinite programming problems which have
been exploited in the algorithms from Chapter 4.

Part I ends with an important contribution: the development of the sequential convex
bilevel programming algorithm. Note that this algorithm has been motivated by comparing
it to other possible numerical algorithms which could be based on standard sequential
quadratic programming techniques. The main advantage of the algorithm is that it
exploits the particular structure of nonlinear semi-infinite optimization problems, as the
min-max nature of the problem is kept in the convex sub-problems which have to be solved
sequentially. In Theorem 4.1 it has been shown that the algorithm can be expected to
converge quadratically requiring the evaluation of first and second order derivatives only.
This is in contrast to an application of exact Hessian sequential quadratic programming
algorithms to a linearization based approximate formulation which would require at least
third order derivatives of the model functions in order to obtain quadratic convergence.
Moreover, the sub-problem in the sequential convex bilevel programming algorithms is
convex as long as we work with positive semi-definite upper level Hessian approximations.
The global convergence properties of the proposed algorithm have been investigated in
Theorem 4.2. In addition, the applicability and performance of the method have been
tested and illustrated in Section 4.5 where a numerical example is considered.
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The Contributions of Part II

In Chapter 5 the propagation of uncertainty in dynamic systems has been analyzed aiming
at numerical methods for computing robust positive invariance tubes. For linear systems,
a main result was stated in Theorem 5.1, where we have discussed methods for ellipsoidal
uncertainty tubes. This result can be interpreted as an extension of existing strategies
which have originally been developed by Schweppe and Glover [102, 209] as well as by
Kurzhanski and Varaiya [146, 144]. However, a main contribution of this chapter is
discussed in Section 5.3, where techniques for the computation of robust positive invariant
tubes for nonlinear dynamic systems are developed. These techniques are relevant, as first
principle models of real-world dynamic processes are typically nonlinear. The corresponding
analysis can be seen as a compromise of both: linear approximation of the system dynamics
around a nominal or central trajectory and the careful treatment of nonlinear terms whose
influence is overestimated. Here, the main result was stated in Theorem 5.3 where the
computational technique has been elaborated. Note that the applicability of the approach
has been illustrated with many examples including the extensive case study of the tubular
reactor in Section 6.2.

Chapter 6 must be considered as one of the core chapters of this thesis, where the
technical methods for computing robust positive invariant tubes have been employed to
find tractable formulations of nonlinear robust optimal control problems which are based
on a set valued notation. The main result of this chapter has been stated in Theorem 6.1,
where guarantees on the conservatism of the proposed approximation approach are proven.
Furthermore, the techniques have been extended to periodic systems. In Section 6.3 the
relations between periodic robust positive invariant tubes and the existence of Lyapunov
functions for periodic systems have been discussed. These considerations have led to
Theorem 6.3, where a formulation of robust optimization problems for periodic systems as
well as a technique for obtaining guarantees on the region of attraction of open-loop stable
dynamic systems have been investigated. Part II ends in Section 6.4, where an application
of the developed techniques to an open-loop controlled inverted spring pendulum has been
shown.

The Implementation and Applications of Part III

The main contribution of Part III is the development of the optimal control software
ACADO Toolkit. This implementation has been the basis for all the numerical results in

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject

پروژه و پایان نامھ مھندسی صنایع و مدیریت
telegram.me/ieproject



AN INTERPRETATION OF THE DEVELOPED ROBUST OPTIMIZATION METHODS 259

this thesis. Here, we recall that Part II has discussed how to cast robust optimal control
problems in form of smooth standard optimal control problems which have to be solved
numerically. The details of the implementation of this software have been presented in
Chapter 7, where the scope and class structure of the tool are elaborated. Moreover, we
discussed tutorial examples explaining the convenient symbolic syntax which is one of the
basic features of ACADO and which enables us to use automatic differentiation, structure
detection, symbolic optimization of mathematical expressions, and many other features
which help the user to set up and solve optimal control problems efficiently. Here, we
recall that the optimal control algorithms in ACADO are based on direct multiple shooting
methods combined with various SQP algorithms.

One highlight of ACADO is its efficiency for small scale nonlinear model predictive control
applications. In Chapter 8 we presented the implementation of automatic code export
techniques. The numerical tests have shown a promising performance of the code being
able to perform real-time Gauss-Newton iterations in much less than a millisecond. This
has opened a new range of fast applications for nonlinear model predictive control –
especially as the exported code can easily be installed on embedded hardware.

In Chapter 9 we presented an algorithm and extension of ACADO which exploits the structure
of differential algebraic equations making use of automatic differentiation techniques and
tailored algebraic relaxation techniques. The inexact SQP method which has been
developed for this class of problems can be used to reduce the computational load of the
sensitivity generation which is often the most expensive part in optimal control algorithms
for large scale DAE systems. Note that the method has successfully been applied to
the optimization of a distillation column with 82 differential and 122 algebraic states
illustrating the performance of the method and its implementation.

Finally, Part III ends with an application of robust optimization techniques to a biochemical
reaction. The main point of Chapter 10 was that the periodic stationarity state of
an uncertain dynamic system can efficiently be optimized in a linear approximation if
automatic backward differentiation techniques are employed to evaluate the sensitivities of
the constraint functions with respect to a possibly large number of unknown parameters.
The benefit of the technique has been illustrated by applying it to a periodically operated
biochemical fermentation process.
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260 CONCLUSIONS

11.2 Future Research Directions

The algorithms and implementation of the robust optimization and control techniques
in this thesis are likely to have much potential in real-world applications. In this thesis,
we have only discussed some representative applications for illustrating and testing the
methods. However, given the fact that uncertainty plays a role in almost all engineering
processes there are many interesting applications of the methods waiting to be discovered.

Besides the applications, the techniques in this thesis also leave space for theoretical
developments. Especially a transfer of the open-loop robust optimization to feedback
controlled dynamic systems appears to be a natural step for future research. In addition,
there are still open questions concerning a priori bounds on the level of conservatism
of the presented approximation strategies for robust optimal control. In this thesis, we
have shown that the level of conservatism remains small in many applications. A more
consistent analysis could be based on an application of the ellipsoidal inner approximation
techniques form Chapter 2 to the computation of robust positive invariant tubes for
uncertain nonlinear dynamic systems.

Finally, the ACADO Toolkit has a great potential to be extended and applied in many
fields of engineering. Especially, the code export features show a promising performance
and many fast real-world processes, as for example arising in the field of mechatronics, are
natural candidates for an application of the developed tools.
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