
Metaheuristics for the Vehicle Routing Problem

with Stochastic Demands

Leonora Bianchi1, Mauro Birattari2, Marco Chiarandini3, Max Manfrin2, Monaldo
Mastrolilli1, Luis Paquete3, Olivia Rossi-Doria4, and Tommaso Schiavinotto3

1 IDSIA, USI-SUPSI, Switzerland, leonora@idsia.ch
2 IRIDIA, Université Libre de Bruxelles, Belgium

3 Intellectics Group, TU Darmstadt, Germany
4 School of Computing, Napier University, UK

Abstract. In the vehicle routing problem with stochastic demands a vehicle has to serve
a set of customers whose exact demand is known only upon arrival at the customer’s
location. The objective is to find a permutation of the customers (an a priori tour) that
minimizes the expected distance traveled by the vehicle. Since the objective function is
computationally demanding, effective approximations of it could improve the algorithms’
performance. For the problem under study, we show that a good choice is using the length
of the a priori tour as a fast approximation of the objective, to be used in the local search
of the several metaheuristics analyzed. We also show that for the instances tested, our
metaheuristics find better solutions with respect to a known effective heuristic and with
respect to solving the problem as two related deterministic problems.

1 Introduction

The Vehicle Routing Problem with Stochastic Demands (VRPSD) is defined on a complete
graph G = (V,A,D), where V = {0, 1, ..., n} is a set of nodes (customers) with node 0 denoting
the depot, A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs joining the nodes, and D = {dij :
i, j ∈ V, i 6= j} are the travel costs (distances) between nodes. The cost matrix D is symmetric
and satisfies the triangular inequality. One vehicle with capacity Q has to deliver goods to the
customers according to their demands, minimizing the total expected distance traveled, and
given that the following assumptions are made. Customers’ demands are stochastic variables
ξi, i = 1, ..., n independently distributed with known distributions. The actual demand of each
customer is only known when the vehicle arrives at the customer location. It is also assumed
that ξi does not exceed the vehicle’s capacity Q, and follows a discrete probability distribution
pik = Prob(ξi = k), k = 0, 1, 2, ...,K ≤ Q. A feasible solution to the VRPSD is a permutation
of the customers s = (s(1), s(2), . . . , s(n)) starting at the depot (that is, s(1) = 0), and it is
called a priori tour. The vehicle visits the customers in the order given by the a priori tour, and
it has to choose, according to the actual customer’s demand, whether to proceed to the next
customer or to go to depot for restocking. Sometimes the choice of restocking is the best one,
even if the vehicle is not empty, or if its capacity is bigger than the expected demand of the
next scheduled customer, this action is called ‘preventive restocking’. The goal of preventive
restocking is to avoid the bad situation when the vehicle has not enough load to serve a customer
and thus it has to perform a back-and-forth trip to the depot for completing the delivery at the
customer. In the VRPSD, the objective is to find an a priori tour that minimizes the expected
distance traveled by the vehicle, which is computed as follows. Let s = (0, 1, . . . , n) be an a
priori tour. After the service completion at customer j, suppose the vehicle has a remaining



2

load q, and let fj(q) denote the total expected cost from node j onward. With this notation,
the expected cost of the a priori tour is f0(Q). If Lj represents the set of all possible loads
that a vehicle can have after service completion at customer j, then, fj(q) for q ∈ Lj satisfies
fj(q) = Minimum{fp

j (q), f r
j (q)}, where

f
p
j (q) = dj,j+1 +

∑

k:k≤q

fj+1(q − k)pj+1,k

+
∑

k:k>q

[2dj+1,0 + fj+1(q +Q− k)]pj+1,k,
(1)

f r
j (q) = dj,0 + d0,j+1 +

K
∑

k=1

fj+1(Q− k)pj+1,k, (2)

with the boundary condition fn(q) = dn,0, q ∈ Ln. In (1-2), fp
j (q) is the expected cost corre-

sponding to the choice of proceeding directly to the next customer, while f r
j (q) is the expected

cost in case preventive restocking is chosen. As shown in [1], the optimal choice is of threshold
type: given the a priori tour, for each customer j there is a load threshold hj such that, if the
residual load after serving j is greater than or equal to hj, then it is better to proceed to the
next planned customer, otherwise it is better to go back to the depot for preventive restocking.
The computation of f0(Q) runs in O(nKQ) time; the memory required is O(nQ), if one is
interested in memorizing all intermediate values fj(q), for j = 1, 2, ..., n and q = 0, 1, ..., Q, and
O(Q) otherwise.

The literature about the VRPSD shows different approaches to the problem. Many papers
do not consider the possibility of doing preventive restocking, like [2, 3], that use a stochastic
programming approach, and [4–6], that propose simple heuristics and perform theoretical in-
vestigations. To our knowledge only one paper uses metaheuristics, namely simulated annealing
[7]. The preventive restocking strategy has been applied in [8] and [9, 1]. In [8], Bertsimas et
al. apply a simple but effective heuristic called cyclic heuristic. In [9, 1], Yang and Yang et al.
study the single and multiple-vehicle VRPSD. They analyze several heuristics and compare
them with an exact branch-and-bound approach for small instances up to 15 customers. They
also adapt to the stochastic case the local search due to Or [10], by proposing a fast approx-
imation computation for the change in the objective function when performing a local search
move. Secomandi [11, 12] investigates the re-optimization approach to the VRPSD, which uses
rollout dynamic programming algorithms to sequentially improve a given a priori tour, each
time the actual demand of a customer is known. In this type of approach the order in which
customers are actually served by the vehicle may be completely different from the a priori tour,
and strongly depends on the actual customers’ demands. For a review about early research on
stochastic VRP’s, see [13, 14]; more recent developments are reported in [15], which also reviews
on different methods used to handle uncertainties in the parameters of the problem.

In this paper we focus on an important aspect of designing metaheuristics for the VRPSD
(and for stochastic combinatorial optimization problems in general): the objective function
is computationally demanding, and effective approximations of it should be employed. Due
to the analogies between the VRPSD and the traveling salesman problem (TSP), a natural
approximation of the objective function is the length of the a priori tour. In fact, if the vehicle
has infinite capacity, the consequent VRPSD can be seen as a TSP. In this paper we consider
basic implementations of five metaheuristics: iterated local search (ILS), tabu search (TS),
simulated annealing (SA), ant colony optimization (ACO) and evolutionary algorithms (EA).
Our main goal is to test the impact on the metaheuristics performance of using the TSP length
of the a priori tour as fast approximation of the VRPSD objective function. The solution quality



3

of our metaheuristics are also compared with the cyclic heuristic and with a priori tours obtained
by solving the problems as a TSP and as a deterministic VRP where the demand is assumed
to be equal to the average demand of the VRPSD.

The remainder of the paper is organized as follows. Section 2 describes the metaheuristics,
pointing out the common elements and the way the VRPSD objective function has been ap-
proximated. Section 3 reports on computational experiments, and section 4 summarizes the
conclusions that can be drawn from the experimental results.

2 The Metaheuristics

As already stated in the introduction, the main goal of this study was to see whether approxi-
mating the exact but computationally demanding objective with the fast computing length of
the a priori tour is convenient or not. Our hypothesis was that the speedup due to the use of a
fast approximation of the objective would be an advantage especially during the phase of local
search, when many potential moves must be evaluated before one is chosen. In fact, the exact
cost of a local search move is the expected cost difference between the a priori tour after the
move and before the move; however, this computation takes O(nKQ) time. Hence, we consider
two different approximation schemes for the move cost: i) VRPSDlike, that was suggested in
[1], and requires O(KQ) time, and ii) TSPlike, that requires O(1) time. Given that all meta-
heuristics use the same local search, we consider two versions for each metaheuristic according
to the type of local search approximation scheme. In the remainder of the paper, when we
want to specify a version of a metaheuristic, we add to its name the -VRPSDlike or -TSPlike
label (as, for example, ILS-VRPSDlike or ILS-TSPlike). Notice also that, depending on the
metaheuristic, the local search may be used either as a black-box, or not. In particular, ACO,
EA and ILS use the local search as a black-box, but TS and SA do employ their own strategy
for examining the neighborhood of a solution. In the following, we describe in more detail the
local search with its two approximation schemes, the initialization criterion of metaheuristics,
the metaheuristics, and the other algorithms that took part at the experimental comparisons.

The OrOpt local search We chose the OrOpt insertion as suggested in [1]. Given a starting
tour, sets Sk of k consecutive customers are moved from one position to another in the tour,
with k ∈ {1, 2, 3}, like in Fig. 2. In the following we describe the two types of approximation
schemes used for the computation of the move cost.

i

Sk

i+k j j+1i+1 i+k+1

Fig. 1. How an a priori tour is modified after performing an OrOpt move, where the set of consecutive
customers Sk (with k = 3) is moved forward in the tour.



4

VRPSDlike approach The move cost may be computed in two stages: i) compute the saving
from extracting the set of costumers from the tour; ii) compute the cost of inserting it back
somewhere else in the tour. Let i and i+k+1 be the nodes immediately preceding, respectively
following, Sk in the tour, and let j be the node immediately after which Sk is to be inserted, as
shown in Fig.2. Here, we assume that j is after i in the a priori tour. Let fi(q) and fi+k+1(q)
be the expected cost-to-go from nodes i, respectively i + k + 1 onward before the extraction
of Sk. Apply one dynamic programming recursion step starting with cost vector fi+k+1(·) at
node i+ k + 1 back to node i, without considering the sequence Sk. Let f ′

i(·) be the resulting
cost vector at node i, that is, after extracting Sk from the tour. Then, define the approximate
extraction saving as a simple average over q of f ′

i(q)−fi(q). The computation of the approximate
insertion cost of Sk between nodes j and j+1 in the tour, is done analogously, if we assume that
the insertion point (node j) is after the extraction point (node i). Let fj(q) be the cost-to-go
at node j before inserting Sk, and f ′′

j (q) be the cost-to-go at node j after inserting the Sk.
The total approximate cost of an OrOpt move is computed by subtracting the approximate
extraction saving form the approximate insertion cost, as follows

VRPSDlike-move-cost =

∑Q

q=0[(f
′′
j (q) − fj(q)) − (f ′

i(q) − fi(q))]

Q+ 1
. (3)

Note that the cost vectors are assumed to be already available from the computation of the
expected cost for the starting tour, thus, they do not need to be computed when evaluating
eq.(3). The only computations that must be done here are the evaluation of cost vectors f ′

i+1(·)
and f ′′

j (·), requiring O(KQ) time, and the average of eq.(3), requiring O(Q) time. Therefore,
with the proposed VRPSDlike approximation, the cost of an OrOpt move can be computed in
O(KQ) time. Although it is possible that tours which are worsening with respect to the eval-
uation function are accepted because recognized as improving by the approximate evaluation,
in practice this approximation scheme behave quite well. For a deeper discussion on the issues
related with this scheme we refer the reader to the original paper [1].

TSPlike approach In the TSPlike approach the cost of an OrOpt move coincides with the
difference between the length of the tour before the move and after the move:

TSPlike-move-cost = di,i+k+1 + dj,i+1 + di+k,j+1

−di,i+1 − di+k,i+k+1 − dj,j+1,
(4)

where, as before, i and j are the extraction, respectively insertion point of a string of k consec-
utive customers (see Figure 2). Clearly, eq. (4) is computable in constant time.

The OrOpt neighborhood examination follows the same scheme proposed in [1]. Briefly, all
possible sequences of length k ∈ {1, 2, 3} are considered for insertion in a random position of the
tour after the extraction point. Then, only the ‘best’ move among those of length k is chosen.
The ‘best’ move is the move corresponding to the most negative move cost, which is computed
by eq. (3) in the VRPSDlike approach and by equation eq. (4) in the TSPlike approach.

Randomized Farthest Insertion The Farthest Insertion is a tour construction heuristic
originally designed for the TSP [16]; it builds a tour by choosing as next customer the not-yet-
visited customer which is furthest from the current one, of course the final solution depends
on the starting customer. Here, we consider the Randomized Farthest Insertion heuristic (FR),
that picks randomly the first customer, and after the tour has been completed, the starting
customer is shifted to the depot. Like in all our metaheuristics, after the tour is built, the
OrOpt local search is applied for further improving it. All metaheuristics use FR for generating
a starting solution (ILS, TS, SA), or a set of starting solutions (ACO, EA).



5

Simulated Annealing The SA metaheuristic [17] uses the local search operators described
before, but also accepts non improving neighbors according to a function of a temperature
parameter which depends on the deterioration in the cost function. The initial temperature
is given by the average cost (VRPSDlike or TSPlike) of a sample of 100 tours of the initial
tour multiplied by a given factor µ. Every TL = ψ · n iterations the temperature is updated
as Tn+1 = α × Tn (standard geometric cooling). After ρ · TL without improvement in the
approximate cost of a tour the temperature is increased by adding Ti to the current value.
The tour considered for checking improvements is the best since the last re-heating. From
preliminary experiments we set: µ = 0.05, α = 0.98, ψ = 1 and ρ = 20.

Tabu Search The TS metaheuristic [18, 19] is based on the idea of accepting also worsening
neighbors during local search but controlling cycles by avoiding the repetition of visited tours.
For the VRPSD, we defined the tabu mechanism as follows. After an Or-opt move on the current
tour S (extracting the sub-sequence Sk for a given size k from position i and re-inserting it at
position j) the moves that become tabu are all insertions such that: i) a customer at position
i + 1 of S becomes again the successor of customer at position i of S; or ii) a customer at
position i+ k+1 of S becomes again the successor of customer at position i+ k of S. The tabu
tenure is randomly chosen in the interval [0.8(n− k − 1), (n− k − 1)].

We consider a probabilistic acceptance criterion as follows: if a move is non tabu its cost is
evaluated with a probability of 0.8 and selected if it leads to an improving tour. If the move is
tabu its cost is evaluated with a probability of 0.3 and the move is selected in spite of its tabu
status if it leads to the best tour found so far.

In TS-VRPSDlike the selection and acceptance of a move is done according to the VRPSDlike

approximation scheme. The exact cost of the new tour obtained is then computed. In TS-
TSPlike, the selection depends on the TSPlike approximation scheme, but the selected move
is performed only if it leads to a real improvement of the exact cost of the tour. If the move
selected does not lead to a real improvement no move is performed and the search continues
with a different k.

Iterated Local Search The ILS metaheuristic is based on the idea of improving the local
search procedure by providing new starting tour obtained from a perturbation of the current
solution [20]. In our implementation the perturbation consists in a sampling of n neighboring
tours according to the 2-opt exchange neighborhood [21]. Each new tour is evaluated with the
exact cost function and if a tour is found that has cost smaller than the best tour found so far
plus ε, the sampling ends. ε = n

10 was empirically the best value found on some preliminary
runs. Otherwise, the best perturbed tour is returned.

The local search uses respectively the VRPSDlike or the TSPlike approximation scheme.
Finally, the acceptance criterion evaluates each new local optima found with the exact VRPSD
cost function and accept it as current solution if it is the best tour found so far.

Ant Colony Optimization In the ACO metaheuristic [22], a set of agents, called ants, build
solutions to the given problem cooperating through pheromone-mediated indirect and global
communication. In this study, we consider the Ant Colony System (ACS), and ACO variant
proposed in [23]. At each iteration, m ants construct a tour by building a complete sequence
of customers using stigmergic information from a “pheromone matrix” τ : V × V → <≥0. The
pheromone values τi,j are an estimate of the utility of going from a customer i to a customer
j in the a-priori tour. An ant which is at customer i chooses a not-yet-visited customer j



6

as next customer with probability proportional to τi,j . After each construction step a local

update rule is applied to the element τi,j corresponding to the chosen customer pair: τ(i , j ) =
(1 − ψ) · τ(i , j ) + ψ · τ0, with ψ ∈ [0,1]. After all the m ants have built their tours, the local
search is applied to each of them. Then, the best tour found since the beginning of the run
according to the exact VRPSD cost function (Sbest) is determined, and it is used in the global

update rule to change all the entries in the pheromone matrix as follows:

τ(i , j ) =

{

(1 − ρ) · τi,j + ρ · q

f(Sbest)
if (i , j ) is in Sbest

(1 − ρ) · τi,j otherwise
, (5)

where q and ρ are parameters.
Pheromone is initialized in the following way. First, all pheromone values are set to τ0, and

Sbest is initialized with the best among m tours generated by the FR heuristic refined by the
OrOpt local search. Then, the global update rule is applied r times to the pheromone matrix.
In our ACS implementation, heuristic information is only used by FR in the initialization
phase, but not in the ants’ tour construction process. From preliminary experiments the set of
parameters that was chosen is: m = 5, τ0 = 0.5, ψ = 0.3, ρ = 0.1, q = 107, r = 100. In ACS
every tour outside the local search is evaluated with the exact cost function. The VRPSDlike

and TSPlike approximation schemes are only used in the local search.

Evolutionary Algorithm EA metaheuristics are based on the essence of natural evolution
processes, which involve the reproduction, random variation, competition, and selection of con-
tending individuals in a population [24]. Here, the population is initialized with solutions pro-
duced by the FR heuristic. At each iteration two parent solutions are chosen among the best
ones to generate a new child solution through the recombination operator. After some prelimi-
nary experiments, we chose the Edge Recombination operator of Whitley et al. [25]. It tries to
build a child tour exclusively from the edges present in both parent tours, whenever possible. A
mutation operator, consisting of swapping adjacent customers without considering the depot,
is applied with probability 0.5. Then, local search is used to improve the solution. Finally, the
improved solution replaces the worst solution in the population. We use a population of size 10.
As for ACS, in EA the only difference between the VRPSDlike version and the TSPlike version
is in the local search they use.

2.1 Other Algorithms

In order to better understand the influence of the stochasticity in the problem, two state of
the art algorithms to solve the VRPSD as a TSP [26] and as a capacitated VRP (CVRP) [27]
have also been included in our study. In the first case, the coordinates of all customers (depot
included) are used to define a corresponding TSP instance; the instance is solved by the state
of the art TSP algorithm and the solution found is then shifted so to start with the depot. In
the second case, the coordinates, average customers’ demands and vehicle capacity are used to
define a corresponding CVRP instance. A CVRP solution in general is not a single a priori tour
visiting the depot once, but it is composed by a set of tours visiting different sets of customers
(apart from the depot). Such a solution is transformed into an a priori tour by keeping the
same order in which customers are visited and by deleting the intermediate multiple visits to
the depot. In both cases (TSP and CVRP) the final solution, once transformed into a VRPSD
a priori tour, is finally evaluated with the exact cost function of the VRPSD.

For comparison with the existing literature about the VRPSD, we have also implemented
the simple but effective cyclic heuristic [6, 8]. Following the description of [8], the cycle heuristic



7

works as follows. First, heuristically solve a TSP over the n customers (depot excluded). Then,
for each of the n cyclic permutations of the tour found, use the 2-opt local search to obtain
a new tour. Evaluate with the VRPSD objective function the 2n tours obtained, and choose
the best one. The computational experience in [8] suggests that the cyclic heuristic provides
good quality solutions for instances with 50 to 100 customers, uniformly distributed on the unit
square, and it is therefore an example of the effectiveness of the TSP analogy.

3 Experimental comparisons

3.1 Instances and experimental setup

In the literature there is no commonly used benchmark for the VRPSD, therefore we have
generated our own the testbed. We have tried to consider instances which are ‘interesting’ from
different points of view. First of all, the position of customers was not chosen uniformly at
random, but randomly with normal distributions around two centers (so customers are grouped
in two clusters). This is done in order to consider instances nearer to the real world situations,
where customers may be located for instance in two different cities. The clusters’ centers have
coordinate in [0,99], and customers’ coordinates are all different. We considered a total of 120
instances, of these, 75 instances have 50 customers, 40 instances have 100 customers, and 5
instances have 200 customers.

As it emerged from [28], an important factor that influences the ‘difficulty’ of a VRPSD
instance is the ratio between the total (average) demand of customers and the vehicle’s capacity.
The bigger the ratio, the more ‘difficult’ the instance. Here, the vehicle capacity Q was chosen
in the following way

Q = d
total average demand · r

n
e, (6)

where the parameter r may be approximately interpreted as the average number of served
customers before restocking. In our testbed, we have generated instances with r = 4, which
corresponds to demand over capacity ratios from about 12 to 50, which is a much higher value
than the values used in the VRPSD literature (typical values are below 3).

Each customer’s demand is an integer stochastic variable uniformly distributed on an inter-
val. The demand interval for each customer i was generated using two parameters: the average
demand Di, and the spread Si, so that the possible demand values for customer i are the
2Si +1 integers in the interval [Di −Si, Di +Si]. Average demands were chosen so that for each
customer i, Di ∈ [1, 49] with probability 1/2, and Di ∈ [50, 100] with probability 1/2. Spreads
were chosen so that for each customer i, Si ∈ {1, 5} with equal probability.

Each algorithm was tested once on each instance for a time equal to 60, 600 or 6000 seconds
for instances respectively with 50, 100 or 200 customers. All algorithms, except the cyclic
heuristic ant the TSP state of the art algorithm, used all the available time for the computation.
FR was restarted from a newly generated solution each time that the local search stopped in a
local optimum. Experiments were performed on a cluster of 6 PCs with Athlon CPUs 1400MHz
running GNU/Linux Debian OS, and all algorithms were coded in C++.

3.2 Results

Results are summarized in the boxplots of Fig. 2. Each row of a boxplot shows the distribution
of the quantity on the horizontal axis obtained by each metaheuristic on all the tested instances.
The left plot of Fig. 2 reports on the horizontal axis the expected cost of the solutions found,



8

normalized with respect to the range of improvement found by FR. So, for a given instance and
a given metaheuristic MH, the normalized value reported on the boxplot is

Normalized Value for MH =
MH final value − FR final value

FR starting value − FR final value
. (7)

The right plot of Fig. 2 shows the ranking of metaheuristics; the results of all executions on the
same instance are ordered by quality of the solution (VRPSD expected cost) to determine the
rank.

ils−tsplike
ils−vrpsdlike

ea−tsplike
ea−vrpsdlike

ts−tsplike
ts−vrpsdlike

fr−tsplike
fr−vrpsdlike

sa−tsplike
sa−vrpsdlike
aco−tsplike

aco−vrpsdlike
cych

tsp
cvrp

−10 −5 0 5

Normalized Values

ils−tsplike
ils−vrpsdlike

ea−tsplike
ea−vrpsdlike

ts−tsplike
ts−vrpsdlike

fr−tsplike
fr−vrpsdlike

sa−tsplike
sa−vrpsdlike
aco−tsplike

aco−vrpsdlike
cych

tsp
cvrp

2 4 6 8 10 12 14

Ranks

Fig. 2. Results over the 120 tested instances. The vertical bar of each box corresponds to the median
value of the quantity on the horizontal axis; the box spans the interval included in the 25% and
75% quantile; the whiskers extend to the more extreme points that are no more than 1,5 times the
interquartile; the circles represent points who are outside this interval.

For the interpretation of the results, one could consider the performance of FR like a sort of
minimal requirement for a metaheuristic. In fact, FR does essentially the simple iteration of the
same local search for different starting solutions, until the available computation time is not over.
Therefore, it is reasonable to request that a good algorithm for the VRPSD perform significantly
better than FR. From Fig. 2, it seems that only ILS, EA and TS perform significantly better
than FR. This observation is confirmed by the one-tailed paired Wilcoxon test, confidence level
95% with Holmes corrections for multiple tests [29], that we have done for each couple MH-FR
(with the same type of approximation scheme).

We have also verified if the TSPlike version of the metaheuristics is significantly better than
the VRPSDlike version, and the answer is positive5.

Another point to note is that the cyclic heuristic performs worse than all metaheuristics.
This is an interesting results, since the cyclic heuristic was performing very well [8] for different

5 We refer the reader interested in the details of the performed statistical tests to the webpage
http://iridia.ulb.ac.be/vrpsd.ppsn8/experiments.html



9

types of instances (customers uniformly distributed on the unit square and low demand over
capacity ratio). The worst algorithms in our tests are the two state of the art heuristics for the
TSP, respectively CVRP; this is a point which encourages the development of VRPSD problem-
specific algorithms, and let us conclude that, for the type of tested instances, the stochasticity
of the problem is not negligible.

4 Conclusions

Our main goal in this paper was to test the impact on the metaheuristics’ performance of
using the length of the a priori tour as fast approximation of the exact but computationally
demanding objective function. For this porpose, we have considered two different approximation
schemes for evaluating the cost of a local search move: the VRPSDlike approximation (as
also suggested in [1]) and the TSPlike approximation. We show experimentally that using the
TSPlike approximation leads to better performing metaheuristics with respect to using the
VRPSDlike approximation. We also show that for the tested instances, our metaheuristics find
better solutions with respect to the cyclic heuristic (which is known from the literature to
perform well on different types of instances) and with respect to solving the problem as a
traveling salesman problem and as a capacitated vehicle routing problem, which are related
classical deterministic problems.

Acknowledgments

This work was supported by the Metaheuristics Network, a Research Training Network funded
by the Improving Human Potential Programme of the CEC, grant HPRN-CT-1999-00106. The
information provided is the sole responsibility of the authors and does not reflect the Com-
munity’s opinion. The Community is not responsible for any use that might be made of data
appearing in this publication.

References

1. W. Yang, K. Mathur, and R. H. Ballou. Stochastic vehicle routing problem with restocking.
Transportation Science, 34(1):99–112, 2000.

2. C. Bastian and A. H. G. Rinnooy Kan. The stochastic vehicle routing problem revisited. European

Journal of Operational Research, 56:407–412, 1992.
3. M. Dror. Modeling vehicle routing with uncertain demands as a stochastic program. European

Journal of Operational Research, 64:432–441, 1993.
4. P. Jaillet and A. Odoni. In B. L. Golden and A. A. Assad, editors, Vehicle Routing: Methods and

Studies, chapter The probabilistic vehicle routing problems. Elsevier, Amsterdam, The Netherlands,
1988.

5. D. J. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization. Operations Research, 38(6):1019–
1033, 1990.

6. D. J. Bertsimas. A vehicle routing problem with stochastic demand. Operations Research,
40(3):574–585, 1992.

7. D. Teodorović and G. Pavković. A simulated annealing technique approach to the vehicle routing
problem in the case of stochastic demand. Transportation Planning and Technology, 16:261–273,
1992.

8. D. J. Bertsimas, P. Chervi, and M. Peterson. Computational approaches to stochastic vehicle
routing problems. Transportation Science, 29(4):342–352, 1995.



10

9. W. H. Yang. Stochastic Vehicle Routing with Optimal Restocking. PhD thesis, Case Western
Reserve University, Cleveland, OH, U.S.A., 1996.

10. I. Or. Traveling salesman-type combinatorial problems and their relation to the logistics of blood

banking. PhD thesis, Department of Industrial Engineering and Management Sciences, Nortwestern
University, Evanston, IL, 1976.

11. N. Secomandi. Exact and heuristic dynamic programming algorithms for the vehicle routing problem

with stochastic demands. PhD thesis, University of Houston, Texas, 1998.
12. N. Secomandi. A rollout policy for the vehicle routing problem with stochastic demands. Operations

Research, 49(5):796–802, 2001.
13. D. J. Bertsimas and D. Simchi-Levi. A new generation of vehicle routing research: robust algo-

rithms, addressing uncertainty. Operations Research, 44(2):216–304, 1996.
14. M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. European Journal of Opera-

tional Research, 88:3–12, 1996.
15. A. Kenyon and D. P. Morton. A survey on stochastic location and routing problems. Central

European Journal of Operations Research, 9:277–328, 2002.
16. J.L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Com-

puting, 4(4):387–411, 1992.
17. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

(4598):671–680, 1983.
18. F. Glover. Tabu search - Part I. ORSA Journal on Computing, 1(3):190–206, 1989.
19. F. Glover. Tabu search - Part II. ORSA Journal on Computing, 2(1):4–32, 1990.
20. H.R. Lourenço, O. Martin, and T. Stützle. In F. Glover and G. Kochenberger, editors, Handbook of

Metaheuristics, volume 57 of International Series in Operations Research & Management, chapter
Iterated Local Search, pages 321–353. Kluwer Academic Publishers, Boston, U.S.A., 2002.

21. D. S. Johnson and L. A. McGeoch. The travelling salesman problem: A case study in local opti-
mization. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization,
pages 215–310. John Wiley and Sons, Ltd., New York, U.S.A., 1997.

22. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial

Life, 5(2):137–172, 1999.
23. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning approach to the

travelling salesman problem. IEEE Transactions On Evolutionary Computation, 1(1):53–66, 1997.
24. T. Baeck, D. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 1: Basic Algorithms

and Operators. Institute of Physics Publishing, Bristol, UK, 2000.
25. D. Whitley, T. Starkweather, and D. Shaner. The travelling salesman and sequence scheduling:

Quality solutions using genetic edge recombination. In L. Davis, editor, Handbook of Genetic

Algorithms, pages 350–372. Van Nostrand Reinhold, New York, U.S.A., 1991.
26. T. Stützle and H. Hoos. In P. Hansen and C. Ribeiro, editors, Essays and Surveys on Metaheuristics,

chapter Analyzing the Run-time Behaviour of Iterated Local Search for the TSP, pages 589–612.
Kluwer Academic Publishers, Boston, U.S.A., 2002.

27. L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system
for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors,
New Ideas in Optimization. McGraw-Hill, 1999.

28. M. Gendreau, G. Laporte, and R. Séguin. An exact algorithm for the vehicle routing problem with
stochastic demands and customers. Transportation Sciences, 29(2):143–155, 1995.

29. W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, NY, 1999.
30. S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,

6:65–70, 1979.


